Elementary Algebra Review Sheet
Basic Rules of Algebra
- Commutative Property of Addition
$a+b=b+a$ - Commutative Property of Multiplication
$ab = ba$ - Associative property of Addition
$(a+b)+c=a+(b+c)$ - Associative Property of Multiplication
$(ab)c = a(bc)$ - Left Distributive Property
$a(b+c) = ab + ac$ - Right Distributive Property
$(a+b)c = ac+bc$ - Additive Identity Property
$a + 0 = a$ - Multiplicative Identity Property
$a\cdot 1 = 1\cdot a = a$ - Additive Inverse Property
$a+(-a) = 0$ - Multiplicative Inverse Property
$a \cdot \frac{1}{a} = 1, a\neq 0$
Properties of Equality
- Addition Property of Equality
If $a=b$, then $a+c=b+c$ - Multiplication Property of Equality
If $a=b$, then $ac=bc$ - Cancellation Property of Addition
If $a+c = b+c$, then $a=b$ - Cancellation Property of Multiplication
If $ab=bc$ and $c\neq 0$, then $a=b$
Zero-Factor Property
- If $ab=0$, then $a=0$ or $b=0$
Properties of Negation
- Multiplication by $-1$
$(-1)(a) = -a$ and $(-1)(-a) = a$ - Placement of Minus Signs
$(-a)(b) = -(ab) = (a)(-b)$ - Product of Two Opposites
$(-a)(-b)=ab$
Operations with Fractions
- $\displaystyle \frac{a}{b}\cdot\frac{c}{d} = \frac{a\cdot c}{b\cdot d}$
- $\displaystyle \frac{a}{b}+\frac{c}{d} = \frac{ad+ bc}{b d}$
- $\displaystyle \frac{a/b}{c/d} = \frac{a}{b}\cdot \frac{d}{c}=\frac{a}{b}\div\frac{c}{d}$
- $\displaystyle \frac{a}{b}-\frac{c}{d} = \frac{ad- bc}{b d}$
Properties of Exponents
- $a^0 = 1$
- $(ab)^m = a^m \cdot b^m$
- $\dfrac{a^m}{a^n} = a^{m-n}$, $a\neq 0$
- $a^{-n} = \dfrac{1}{a^n}$, $a\neq 0$
- $a^m \cdot a^n = a^{m+n}$
- $\left( a^m \right)^n = a^{m\cdot n}$
- $\left( \frac{a}{b} \right)^m = \frac{a^m}{b^m}$, $b\neq 0$
Special Products
- Square of a Binomial
$(u+v)^2 = u^2+2uv+v^2$
$(u-v)^2 = u^2-2uv+v^2$ - Difference of Two Squares
$u^2-v^2 = (u+v)(u-v)$ - Difference of Two Cubes
$u^3-v^3 = (u-v)(u^2+uv+v^2)$ - Sum of Two Cubes
$u^3+v^3 = (u+v)(u^2-uv+v^2)$
The Quadratic Formula
- Solutions of $ax^2+bx+c=0$
$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$
Common Formulas
Temperature
- $F = \frac{9}{5}C +32$
$F = $ degrees Farenheit
$C = $ degrees Celsius
Simple Interest
- $I = P\cdot r\cdot t$
$I = $ interest
$P = $ principal
$r = $ annual interest rate
$t = $ time in years
Distance
- $d = r\cdot t$
$d = $ distance traveled
$r = $ rate of travel
$t = $ time traveled
Compound Interest
- $A = P\left( 1+\frac{r}{n} \right)^{nt}$
$A = $ distance traveled
$P = $ rate of travel
$r = $ time traveled
$n = $ rate of travel
$rt= $ time traveled