        TRIGONOMETRIC GRAPHS  by JAMES DURAN          

EXAMPLE A:   Graph    
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The graph is  symmetric about
 the origin, so it is an odd function:
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EXAMPLE B:   Graph    
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The graph is  symmetric about
 y-axis, so it is an even function:
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To graph more complicated versions of sine and cosine, we will modify the basic graphs. 

EXAMPLE C:   Graph  
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 over a two period interval.

EXAMPLE D:   Graph   
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 over a two period interval.

EXAMPLE E:   Graph   
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 over a two period interval.

EXAMPLE F:   Graph   
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 over a two period interval.

EXAMPLE G:   Graph    
[image: image51.wmf]2sin3

yx

=-

 over a two period interval.

EXAMPLE H:   Graph    
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 over a two period interval.

HOW  TO GRAPH
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(1)  Identify the amplitude.  The amplitude, defined to be half the difference between the maximum and minimum values which the function attains,   is the positive number 
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(2)  Identify the period.   We can think of the period as the length of one cycle of the sine or cosine function.  

The basic sine, 
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, or cosine, 
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, where the functions complete one cycle.

Consequently, to find the period of 
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we set the “argument”, 
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   (A) That is,  
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, then isolate 
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 (or the given variable).

   The left endpoint is the starting point and 

  the right endpoint is the ending point of one period.

  (B)  Divide this interval into four equal parts, with five points:

   Left endpoint, First-quarter point, Midpoint, Third-quarter point, Right endpoint

(3)  Use the basic sine or cosine graph as a guideline
to graph   
[image: image66.wmf]()sin()

fabd

qq

=-

    or 
[image: image67.wmf]()cos()

fabd

qq

=-

 

(4)  Raise the graph by 
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(5) As needed, refine the shape of the graph by evaluating the function for each of the five points in step (2B).

EXAMPLE I:   Graph    
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 over a two period interval.  

EXAMPLE J:   Graph    
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 over a two period interval.  

EXAMPLE K:   Graph    
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 over a two period interval.  

EXAMPLE L:   Graph    
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 over a two period interval.  

    GRAPHS OF COSECANT AND SECANT FUNCTIONS  

To graph 
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, we can graph the equivalent: 
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To establish the domain, we have to exclude values of 
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cause 
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This implies that 
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 are the vertical 

asymptotes(VA) of 
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. Note:These are the
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-intercepts of the sine function.  
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The graph is  symmetric about

the origin, so it is an odd function:       
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A better approach to graphing any cosecant function, no matter how complex, is to graph the corresponding sine function, as a dashed curve,  and use that graph as a guideline.  

EXAMPLE M:   Graph    
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(1) Graph   
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  using the guidelines discussed earlier.   

(2) Sketch the vertical asymptotes (VA) by determining where
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(Generically, 
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      This can be expressed as 
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(3) Sketch the graph of the desired function by drawing the

typical U-shaped branches between the adjacent asymptotes. 
The branches will be above the graph of the guide function when the guide function values are positive, and below the graph of the guide function when the guide function values are negative.
To graph 
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, we could graph the equivalent: 
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and go through a similar process as graphing 
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; however, it would be easier to graph 
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 as a dashed curve and use that graph as a guideline.  

GUIDELINES FOR SKETCHING GRAPHS OF COSECANT AND SECANT FUNCTIONS

To graph 
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, with 
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, follow these steps:

 (1) Graph   the corresponding reciprocal function as a guide, using a dashed curve.

	To graph 
	Use as a guide
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 (2) Sketch the vertical asymptotes (VA) .  They will have the equations of the form 
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(3) Sketch the graph of the desired function by drawing the

typical U-shaped branches between the adjacent asymptotes. 

The branches will be above the graph of the guide function when the guide function values are positive, and below the graph of the guide function when  the guide function values are negative.

Notice that the graphs of cosecant and secant have no amplitude, since there are no maximum or minimum values 

The cosecant function is an odd function
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The secant function is an even function
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EXAMPLE N:   Graph    
[image: image134.wmf]1

()2c

2

fse

qq

=


EXAMPLE O:   Graph    
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GRAPHS OF TANGENT AND COTANGENT FUNCTIONS  

To graph 
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To establish the domain, we have to exclude values of 
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This implies that 
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 are the vertical 

asymptotes (VA)  of  
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.  The period of a tangent 

function is 
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.  Before graphing , sketch the asymptotes
as dotted lines.
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The graph is  symmetric about    the origin, so it is an odd function: 
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To graph 
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To establish the domain, we have to exclude values of 
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cause 
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This implies that 
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 are the vertical 

asymptotes  ( VA) of 
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. Note:These are the
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-intercepts of the sine function.  

  The period of a cotangent function is 
[image: image169.wmf]p

.  Before graphing , sketch the asymptotes as dotted lines.
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The graph is  symmetric about    the origin, so it is an odd function: 
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 There is no amplitude since there
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GUIDELINES FOR SKETCHING GRAPHS OF TANGENT AND COTANGENT FUNCTIONS

  To graph 
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, follow these steps:

(1) Determine the period by we set the “argument”, 
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, then isolate 
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(or the given variable).

 (2)  Determine and graph the two vertical asymptotes:

     (A) For 
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           and solve for 
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 (or the given variable).

     (B) For 
[image: image197.wmf]()cot()

fabdc

qq

=-+

, set 
[image: image198.wmf](

)

0

bd

q

-=

 and 
[image: image199.wmf](

)

bd

qp

-=


           and solve for 
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(3)  Divide the interval formed by the two vertical asymptotes into  four equal parts, with three  points between  the asymptotes.

 (4)  Use the basic tangent or cotangent graph as a guideline
to graph   
[image: image201.wmf]()tan()
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(5)  Raise the graph by 
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 units if 
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or 

        lower the graph by 
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(6) As needed, refine the shape of the graph by evaluating the function for each of the three points in step (3) and join the points with a smooth curve, approaching the vertical asymptotes.  Indicate additional asymptotes and periods of the graph as necessary.
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EXAMPLE R:   Graph    
[image: image209.wmf]1

()cot4

2

f

qq

=


EXAMPLE S:   Graph    
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EXAMPLE T:   Graph    
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