REIMANN SUM    

Our aim will be to develop the idea of how to find an approximate area below a curve using a Riemann Sum, and then the exact area using Calculus.

Suppose a state’s annual rate of gas consumption per year (which will be a derivative) over 20 years is  constant and is given by the constant function   




f (x) = 30 million barrels of gas / year, where    

                             x = number of years,     0 <   x  < 20 or 
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f (x) = 30
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Suppose we want to find the state’s  total  gas consumption over 20 years.

Method 1:(annual rate of gas consumption/ year)( # of years)


     = (30 million barrels of gas/year)( 20 years)





     =  600 million barrels.

          Note units: (units of dependent variable)
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 (units of independent variable) 

                    = (million barrels of gas/year)
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(years) =   million barrels of gas

Method 2:   Another way to find the state’s  total  gas consumption over 20 years is to find the area below 

f (x) = 30  from x = 0 to x = 20.   

A = lw = 30(20) = 600.  (For now, discard units and focus on numbers.)







    f(x) = 30                                                      
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Another way to find the area is to divide the large rectangle into n = 4 rectangles ( n = # of rectangles each having length

f (x) = 30 and width 
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) and then adding the areas of the n = 4 small rectangles to obtain the area of the large rectangle:

A = Area of the large rectangle                      

= 30(5)      +                  30(5) +   . . .                             + 30(5)

(Area of 1st rectangle)    +     (Area of 2nd rectangle)  . .  +  (Area of n = 4th rectangle)           
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Adding 30(5),  n = 4 times can be written using a Riemann Sum:

A = 
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   (This is summation notation,  where 
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=   30(5)      +                  30(5) +   . . .                             + 30(5)

(Area of 1st rectangle)    +     (Area of 2nd rectangle)  . .  +  (Area of n = 4th rectangle)  

         = 600.

Similarly, we will now we will find the area below the graph of 
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  from x = 0 to x = 20, bounded by y = 0 (the x-axis). 

[image: image56.png]400

00

00

100

100

00

00

400









     x = 0                                x = 20






    ( x = a)
                       ( x = b)


                                              The lower limit            The upper limit

Because of the curved shape of the area, we cannot use the

A = lw formula to find the area below curve, but we can estimate the area by placing n = 4 rectangles below the graph and adding the areas of each of the n = 4 rectangles below the graph.

Each rectangle has length 
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, evaluated at the left endpoint,  and width 
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width of each x – subinterval.)

Estimate of the area by placing n = 4 rectangles below the graph and adding the areas of each of the n = 4 rectangles below the graph.

Each rectangle has length 
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, evaluated at the left endpoint,  and width 
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width of each x – subinterval.)
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A = 
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   ( n = 4  and 
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=   5      +                   130     +           505               +   1130

(Area of 1st rectangle)    +     (Area of 2nd)  +              (Area of 3rd)                 +  (Area of 4th rectangle)           

   =  1770 square units.  Since we are using the left endpoints, and f is increasing, it is clear that this area is an underestimate.   

We can get a better estimate by letting the number of rectangles (n) become larger and larger.  

Let n = 10.  Each rectangle has width  
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As n gets larger and larger (i. e. as n 
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), the rectangles get smaller and smaller, thus becoming a better and better estimate of the area below the curve,  until the estimated area becomes the exact area.  
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Fundamental Theorem of Calculus (Part 2): Let f be continuous on [a,b].  (Assume here f is a positive function.) Then
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F  is the antiderivative of f; that is F’(x) = f(x).  
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 will provide the  exact  area below the curve.

x = a is the lower limit and x = b is the upper limit.  
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Area A  =  
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                    x = 20        x = 0      
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Therefore, the exact area is   
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 square units.
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