APPLICATIONS OF THE FIRST DERIVATIVE

                    INCREASING AND DECREASING FUNCTIONS

Informally speaking, given a function y = f(x) defined on an interval

 I = (a,b), f is an increasing function on I means that as x increases, f(x) increases.
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That is, when 
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If we take some generic value x in the interval I = (a, b) of an   
increasing function, the derivative of the function (the slope of the 
tangent line at that point x ), f'(x),  is positive.  That is,  f’(x) > 0  
since the tangent line slants from lower left to upper right.  


           This observation leads to the following theorem.

 If f'(x)> 0, for each value x in an interval ( a, b ), then f is increasing on the interval (a, b).

(Which function is increasing at a faster rate ? )

Informally speaking, given a function y = f(x) defined on an interval I = (a,b), f is a decreasing function on I means that as x increases, f(x) decreases.
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That is, when 
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(Which function is decreasing at a faster rate ?)

If we take some generic value x in the interval I = (a, b) of an   decreasing function, the derivative of the function (the slope of the tangent line at that point x ), f'(x),  is negative.  That is,  f’(x) < 0  
since the tangent line slants from upper left to lower right.  


This observation leads to the following theorem.

 If f'(x)< 0, for each value x in an interval ( a, b ), then f is decreasing on the interval (a, b).

Also, if f f'(x)= 0, for each value x in an interval ( a, b ), then f is constant on the interval (a, b).
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(I)Increasing/Decreasing Test:

How to Find the Intervals where a Function is Increasing and Decreasing 

(1) Find the values, x , of the function where f’(x) = 0 or where f’(x)  is undefined.  These values of x do not need to be in the domain of f.

(2)  Separate the number line into open intervals using these values.

(3)  Choose user friendly test values (TV)  from each interval.  (Do not use the endpoints of the interval.)

(4)  Replace the test values into the derivative (not the original function) to determine if the derivative is positive or negative.

(5)  If f’(x) > 0  (positive), the function is increasing on that interval .  If f’(x) < 0 (negative),  the function is decreasing on that interval.  

If f'(x)=0, the function is constant on that interval.

Example A:   Determine the intervals where the function 
[image: image5.wmf]32

()394

fxxxx

=+-+

    is increasing and decreasing .  (Part 1)  Also find its relative (local) maximum and minimum.  (Part 2)
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   LOCAL (RELATIVE) EXTREMA 

The local (relative) extrema refers either to the local (relative)  maximum or the local (relative)  minimum.

Informally speaking, the Local (Relative) Maximum is the y-coordinate of the highest point on a graph relative to an interval . At this point, the graph changes from increasing to decreasing. In Algebra, this is called a turning point.


The Local (Relative) Minimum is the y-coordinate of the lowest point on

a graph relative to an interval.  At this point, the graph changes from 

decreasing to increasing.  In Algebra, this is called a turning point.

The critical numbers (or critical values) of a function are numbers, c, in the domain of the function    where f’(c) = 0  or where f’(c) is undefined. Ensure that the critical numbers are in the domain (interval) of the original function]  If they are not in the[image: image54.emf]                  
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 interval, discard them.

y =f(x)

defined

on






[a,b]





On this graph, the relative maximum is __________________  and

the relative minimum are _________________

OBSERVATIONS:
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A function can have more than one relative extrema.
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Relative extrema occur at the critical numbers.  

The last observation leads to Fermat's Theorem, which states that if a function f has a relative maximum or minimum at c , and if f'(c) exists, then f'(c) = 0.  The converse of this theorem is  not true.  Consider the function  
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(II)How to Find the Relative (Local) Extrema of a  Function  f

                                    (First Derivative Test)

(1) Find the critical numbers, c, of the function.

The critical numbers of a function are numbers, c, in the domain of the function    where f’(c) = 0 or where f’(c) is undefined. Ensure that the critical numbers are in the domain (interval) of the original function]  If they are not in the interval, discard them.

(2)  Find the intervals where the function is increasing and decreasing.

(3)  The point where the graph changes from increasing to decreasing  corresponds to  the  relative/ local maximum.   The relative/ local maximum is the y-coordinate of this point.

(4)  The point where the graph changes from decreasing to increasing  corresponds to  the  relative/ local minimum.   The relative/ local minimum is the y-coordinate of this point.

(5) If f’ does not change sign at c, then f has no relative extrema at c. 

Example A (Part2):   Find relative (local) maximum and minimum of 
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The relative maximum occurs at 
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The relative minimum occurs at 
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Example B:   Determine the intervals where the function 
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    is increasing and decreasing .   Also find its relative(local) maximum and minimum.

Example C:   Determine the intervals where the function 
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    is increasing and decreasing .   Also find its relative(local) maximum and minimum.

Example D:   Determine the intervals where the function 
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    is increasing and decreasing .   Also find its relative(local) maximum and minimum.
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