SEQUENCES/SERIES

Informally,  a sequence is set of numbers written in a specific order,  denoted by 
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The generic term is 
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 ( The first term )
The first term is denoted either by 
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   (The second term )
when 
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   (The third  term )
Formally,  a sequence is function whose domain is the set of positive integers : n = 1, 2, 3 ,4, … or  a subset of the integers.
We could denote the function above as 
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, whose graph would be an infinite set of  points.  This sequence happens to be an arithmetic sequence.

More examples of sequences will be presented in class.
If    
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 is a sequence and we want to find the sum of the first n     terms,  
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,   we can use Summation Notation to express this sum in a concise manner:
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           (This is a finite series.)

The symbol  
[image: image17.wmf]å

 is the Greek  letter sigma that tells  us  to sum the first n terms of the sequence, starting when k = 1  and ending when k = n.      The letter k is called the index of the sum.
Theorem –  Properties of Sequences:
If   
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Theorem –  Properties of Sequences ( continued) :
(4)   
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  ,  which is equivalent to
The first series,  
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  ,   starts  when  k = 1  and ends when k = j.  
The second  series,  
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  ,   starts  with k = j +1  and ends when k = n. 
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Theorem  Formulas for Sums of Sequences:
 (5) 
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                            ------ n terms---------------
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This is saying that the sum of the first n integers  is 
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This is saying that the sum of the squares  first n integers  is 
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This is saying that the sum of the cubes  first n integers  is 
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Arithmetic Sequence :   A sequence where each term ( after the first term) differs from the prior term by a constant  
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, called the common difference. 
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  which is equivalent to 
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Arithmetic Sequence  may be defined recursively as    
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Generic    arithmetic   sequence    
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  nth  term  of  an  arithmetic  sequence
For an arithmetic sequence
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Sum of the first    n  terms   of an  arithmetic  sequence      
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This sum,  
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First Way
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      Second  Way
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Geometric Sequence (geometric progression):    a sequence where the common ratio,  
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,  between successive terns is always the same number  
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Geometric Sequence (geometric progression):    a sequence of the form 
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 can be defined recursively as  
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n th Term   of a geometric sequence 
For a generic   geometric  sequence     
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The recursive formula for a geometric sequence is 

[image: image71.wmf]1

-

=

n

n

ra

a

.

Sum of  the  1st  n  terms  of  a  geometric  series
Let  
[image: image72.wmf]{

}

n

a
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THEOREM     Convergence  of  an  Infinite  Geometric  Series.

If        
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  and  its  sum  is      
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SEQUENCES/SERIES

Properties of Sequences:

If   
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Theorem  Formulas for Sums of Sequences:

 (5)    
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Arithmetic Sequence  may be defined recursively as 
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Generic    arithmetic   sequence    
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  nth  term  of  an  arithmetic  sequence

For an arithmetic sequence 
[image: image107.wmf]{

}

n

a

  whose 1st term is 
[image: image108.wmf]1

a

 and  whose  common  difference  is   d,    the nth  term is    
[image: image109.wmf]1

(1)

n

aand

=+-


Sum of the 1st     n  terms   of an  arithmetic  sequence      
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Geometric Sequence (geometric progression):    a sequence where the common ratio r,  between successive terns is always the same number (r).

Geometric Sequence  may be defined recursively as 
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Generic    geometric    Sequence  
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n th Term   of a geometric sequence 

For a   geometric  sequence   
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Sum of  the  1st  n  terms  of  a  geometric  series

Let   
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THEOREM     Convergence  of  an  Infinite  Geometric  Series.

If         
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