GRAPHING POLYNOMIAL FUNCTIONS

Graphs of a polynomial function will either cross the x-axis or touch the x-axis.  These graphs are smooth and continuous, with no: breaks, corners, cusps, or  gaps 

The x-intercepts divide the x-axis into open intervals, and on each such interval, the graph will either be above or below the x-axis.
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Recall, 
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NOTE: -3 is a zero of even multiplicity 

(multiplicity 2) and the graph of f touches the x-axis at (-3,0).

Also, the sign of f(x) does not change from one side to the other side of (-3,0).

[ f(x) remains nonnegative since the graph lies in quadrants I and II.]

Recall, 
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  is the graph 
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NOTE: 4 is a zero of odd multiplicity 

(multiplicity 3) and the graph of f crosses the x-axis at (4,0).

Also, the sign of f(x) does change from one side to the other side of (4,0).

[ f(x) is negative to the left of (4,0) since the graph lies in quadrants III and IV, and positive to the right of (4,0) since the graph lies in quadrant I. 

To generalize, if r is a zero of even multiplicity, the graph of f touches the x-axis at (r,0) and the sign of f(x) does not change from one side to the other side of (r,0).

If r is a zero of odd  multiplicity, the graph of f crosses the x-axis at (r,0) and the sign of f(x) does change from one side to the other side of (r,0).

Example 1: Graph 
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  First find and graph the y-intercept as a point (0,b) and the x-intercepts in the form (a,0).  Use the x-intercepts to find the intervals on which the graph of f is above the x-axis and the intervals on which the graph of f is below the x-axis.
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	Location 
	Below the x-axis
	Below the x-axis
	Above the x-axis



Note: At x = 0, which is a zero

of even multiplicity (multiplicity 2),

 the graph touches the x-axis at (0,0).

Also, at x = 2, which is a zero

of odd multiplicity (multiplicity 1),

 the graph crosses the x-axis at (2,0).

BEHAVIOR NEAR A ZERO

From the function 
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	-0.03
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	-0.01
	                                   -0.000201                         
	                  -0.0002

	      0
	                                               0
	                            0

	 0.01
	                                   -0.000199
	                  -0.0002

	0.03
	                                  -0.001773
	                  -0.0018


From the table, near the zero x = 0, 
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 since the values in the second and third columns are nearly identical.  

How do we obtain 
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From 
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, let x = 0 ( the zero of the factor 
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That is, 
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Let x = 0: 
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.  We obtain 
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Therefore, at x = 0, 
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 resembles  
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, a parabola reflected across the x-axis.

      We will now explore how the graph of  
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 behaves near the other zero  x = 2.  

To determine the behavior of the graph of  
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 near the other zero x = 2, let x = 2 ( the zero of the factor x – 2) in the other factor of  
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That is, 
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Let x = 2: 
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.  We obtain 
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Therefore, at x = 2, 
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, a straight line.  The table below illustrates this fact.
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	1.999
	                            -0.003996                           
	                  -0.004

	      2
	                                         0
	                          0  

	2.001
	                            0.004004       
	                    0.004

	  2.01
	                               0.0404
	                     0.04


From the table, near the zero x = 2, 
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 since the values in the second and third columns are nearly identical.  

We can use this information to refine the shape of the graph of  
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 near the zeros: at  x = 0  and  x = 2.

TURNING POINTS

By  definition, turning points (TP)  are  the points on a graph where a graph changes direction:

 either from increasing to decreasing, or

from decreasing to increasing.

From calculus, the point where a graph changes from increasing to decreasing corresponds to a local (relative) maximum.  [The actual local (relative) maximum is the 

y – coordinate of that turning point.]

Also from calculus, the point where a graph changes from decreasing to increasing corresponds to a local (relative) minimum.  [The actual local (relative) minimum is the 

y – coordinate of that turning point.]

What are the turning points of 
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What is the degree of this polynomial function ?

How  many turning points are there ?

   THEOREM:
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If  f is a polynomial of degree n, then f has at most n - 1

turning points.
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 If the graph of a polynomial function  f has n  turning points, the degree of f is at least n + 1.

Example 2: Which of the graphs below are graphs of polynomial functions ?

For those that are graphs of polynomial functions, list the real zeros and state the least degree the polynomial can have.

For those that are not graphs of polynomial functions, indicate why they are not graphs of polynomial functions.

(1)  






   (2)  


(3)






    (4)

END BEHAVIOR

End behavior refers to what happens to the shape of the graph as x takes on extremely large values in the positive direction i.e. as 
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 or as x takes on extremely small values in the negative direction i.e. as 
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.  

   TO  DETERMINE THE END BEHAVIOR OF A GRAPH:

(1) For an odd degree polynomial, (such as 
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 or 
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), if the leading coefficient is positive, the graph falls to the left and rises to the right.  If the leading coefficient is negative, the graph rises to the left and falls to the right.

(2) For an even degree polynomial, (such as 
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 or 
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), if the leading coefficient is positive, the graph rises to the left and rises to the right.  If the leading coefficient is negative, the graph falls to the left and falls to the right.

Example 3: Determine the end behavior of the following

(a) 
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(c) 
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Putting all these ideas together, here are some guidelines

to graph polynomial functions.

For more basic graphs, you can use transformations i.e. shift the graph up, down, left, right  or compress, stretch, reflect the graph across the x-axis or reflect across the y-axis.

GUIDELINES TO GRAPH  POLYNOMIAL FUNCTIONS

(1)  Find and graph  the y –intercept  [ Set 
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: form 
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]  and the x – intercept(s)  [ Set 
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a

.  Also, check for symmetry about the origin (0,0), an odd function and about the y-axis,  an even function.

(2) Determine whether the graph crosses or touches the x-axis at each x-intercept.  Recall, if r is a zero of even multiplicity, the graph of f touches the x-axis at (r,0) and the sign of f(x) does not change from one side to the other side of (r,0).

If r is a zero of odd  multiplicity, the graph of f crosses the x-axis at (r,0) and the sign of f(x) does change from one side to the other side of (r,0).

(3) Determine the end behavior of the graph.

(4) Determine the maximum number of turning points (TP) of the graph.

(5) Determine the behavior of the graph near each x-intercept.

(This step can, at times, be omitted.)

(6) Put all the information together obtained from the first five steps to graph the function.  Graph more points, as needed,  by choosing x and finding y to refine the shape of the graph.

Example 4: Graph the function 
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using the six steps.

Example 5: Graph the function 
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using the six steps.

Example 6: Graph the function 
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using the six steps.
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