Dan Balaguy Math 31 Summer 2019

Exam 1 Solutions

June 18, 2019

1. Evaluate the integral

$$
\left.\begin{array}{c}
\int_{0}^{1}\left(\frac{x+1}{\sqrt{1-x^{2}}}\right) d x \\
=\int_{0}^{\frac{\pi}{2}}\left(\frac{\sin (t)+1}{\sqrt{1-\sin ^{2}(t)}} \cdot \cos (t)\right) d t=\int_{0}^{\frac{\pi}{2}}\left(\frac{\cos (t)(\sin (t)+1)}{\cos (t)}\right) d x=\operatorname{sos}(t) d t
\end{array}\right] \begin{gathered}
=\int_{0}^{\frac{\pi}{2}}(\sin (t)+1) d t=t-\left.\cos (t)\right|_{0} ^{\frac{\pi}{2}}=\frac{\pi}{2}+1
\end{gathered}
$$

2. Evaluate the limit.

$$
=\lim _{x \rightarrow \infty} e^{\lim _{x \rightarrow \infty} \sqrt{x^{\frac{1}{\ln (x)}}}}
$$

3. Rewrite $\sin (2 \arctan (x))$ as an expression solely in x .

First recall the fact that $\sin (2 x)=2 \sin (x) \cos (x)$

To proceed, we will assume that $\arctan (x)=t$ so we may construct a triangle. Notice that this implies $\tan (t)=x=\frac{x}{1}$.

So, based on our triangle we have that $\sin (t)=\frac{x}{\sqrt{1+x^{2}}}$ and $\cos (t)=\frac{1}{\sqrt{1+x^{2}}}$. But, recall we said $\arctan (x)=t$. Thus, we have:

$$
\sin (2 \arctan (x))=\sin (2 t)=2 \sin (t) \cos (t)=2 \frac{x}{\sqrt{1+x^{2}}} \cdot \frac{1}{\sqrt{1+x^{2}}}=\frac{2 x}{1+x^{2}}
$$

4. Determine the volume generated by the region bounded by the given curves when revolved about the given axis:

$$
\left\{\begin{array}{l}
y=\frac{1}{x^{2}} \\
x=1 \\
x=2 \\
y=0
\end{array}\right.
$$

about the y-axis

$$
V=2 \pi \int_{1}^{2}\left(x \cdot \frac{1}{x^{2}}\right) d x=\left.2 \pi \ln |x|\right|_{1} ^{2}=2 \pi \ln 2
$$

5a. Find y^{\prime} for

$$
\begin{gathered}
y=e^{\sin ^{2}(\ln x)} \\
y^{\prime}=e^{\sin ^{2}(\ln x)} \cdot 2 \sin (\ln x) \cdot \cos (\ln x) \cdot \frac{1}{x} \\
y^{\prime} \stackrel{1}{=} \frac{e^{\sin ^{2}(\ln x)} \sin (2 \ln x)}{x}
\end{gathered}
$$

1: Note we used the fact $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$. If you let $\theta=\ln x$ the reduction applied is apparent.

5b. Find y^{\prime} for

$$
\begin{gathered}
y=x^{\ln ^{2} x} \\
\ln y=\ln \left(x^{\ln ^{2} x}\right)=\ln ^{2} x \cdot \ln x=\ln ^{3} x \\
\frac{1}{y} y^{\prime}=\frac{3 \ln ^{2} x}{x} \\
y^{\prime}=\frac{3 y \ln ^{2} x}{x}=\frac{3 x^{\ln ^{2} x} \ln ^{2} x}{x}=3 x^{\ln ^{2}(x)-1} \ln ^{2} x
\end{gathered}
$$

6a. Evaluate the following integral

$$
\begin{gathered}
\int_{0}^{\frac{\pi}{2}}\left(\frac{\cos (x)}{\sqrt{\sin ^{2}(x)+1}}\right) d x \\
=\int_{0}^{1}\left(\frac{1}{\sqrt{u^{2}+1}}\right) d u r \\
\begin{array}{r}
\text { Let } u=\sin (x) \\
d u=\cos (x) d x
\end{array} \\
=\int_{0}^{\frac{\pi}{4}}\left(\frac{1}{\sqrt{\tan ^{2}(t)+1}} \cdot \sec ^{2}(t)\right) d t=\int_{0}^{\frac{\pi}{4}}\left(\frac{\sec ^{2}(t)}{\sqrt{\sec ^{2}(t)}}\right) d t=\int_{0}^{\frac{\pi}{4}}(\sec (t)) d t \\
d u=\sec ^{2}(t) d t
\end{gathered} \quad \begin{gathered}
\text { Let } u=\tan (t) \\
=\left.\ln |\sec (t)+\tan (t)|\right|_{0} ^{\frac{\pi}{4}}=\ln (\sqrt{2}+1)-\ln (1+0)=\ln (1+\sqrt{2})
\end{gathered}
$$

6b. Evaluate the following integral

$$
\int_{0}^{1}\left(\frac{x}{1+x^{4}}\right) d x
$$

$$
\begin{aligned}
& \text { Let } u=x^{2} \\
& d u=2 x d x \\
& \frac{1}{2} d u=x d x
\end{aligned}
$$

$$
=\frac{1}{2} \int_{0}^{1}\left(\frac{1}{1+u^{2}}\right) d u=\left.\frac{1}{2} \arctan (u)\right|_{0} ^{1}=\frac{\pi}{8}
$$

6c Evaluate the following integral

$$
\begin{gathered}
\int\left(\frac{1}{x \sqrt{1-\ln ^{2} x}}\right) d x \\
=\int\left(\frac{1}{\sqrt{1-u^{2}}}\right) d u \\
\text { Let } u=\ln x \\
d u=\frac{1}{x} d x
\end{gathered} \quad \begin{array}{r}
\text { Let } u=\sin (t) \\
d u=\cos (t) d t \\
=\int\left(\frac{1}{\sqrt{1-\sin ^{2}(t)}} \cdot \cos (t)\right) d t=\int\left(\frac{\cos (t)}{\sqrt{\cos ^{2}(t)}}\right) d t=\int(1) d t=t+C \\
=\arcsin (u)+C=\arcsin (\ln x)+C
\end{array}
$$

7. If $f(x)=3 x^{3}+5 x+11$ and $g=f^{-1}$, then find $g^{\prime}(3)$.

Notice that since g and f are invertible, we have that $g(f(x))=x$. But this means that if we different, we obtain the following:

$$
\begin{gathered}
g^{\prime}(f(x)) \cdot f^{\prime}(x)=1 \rightarrow g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \\
g^{\prime}(f(x))=\frac{1}{9 x^{2}+5}
\end{gathered}
$$

Thus, to find $g^{\prime}(3)$ it should be apparent that we need to solve for $3=f(x)$ and then we plug into the formula we just found and we are done.

$$
3=f(x)=3 x^{3}+5 x+11
$$

$$
\begin{gathered}
0=3 x^{3}+5 x+8 \\
0=(x+1)\left(3 x^{2}-3 x+8\right)
\end{gathered}
$$

So, $x=-1$ or $x=\frac{3 \pm i \sqrt{87}}{6}$. We will ignore the complex solutions. Thus, we find that $x=-1$ is our desired value.

Thus, $g^{\prime}(3)=g^{\prime}(f(-1))=\frac{1}{9(-1)^{2}+5}=\frac{1}{14}$.
8. Find y^{\prime} if $y=\pi^{x}+x^{\pi}+e^{\pi}$.

Recall the useful formula $\frac{d}{d x}\left[a^{x}\right]=a^{x} \ln a, a \neq 0$. Notice how a is constant in this case.

Next, recall $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}, n \neq 0$. Notice how in this case, n is a constant.

Lastly, also notice that e^{π} is nothing more than a number raised to another number and is thus a constant, so its derivative is 0 .

Thus, we have that $y^{\prime}=\pi^{x} \ln (\pi)+\pi x^{\pi-1}$
9. Rewrite $\sin \left(\arctan \left(x^{2}\right)\right)$ as an expression in x (i.e. rewrite this expression without using any trigonometric or inverse trigonometric functions).

To proceed, we will assume that $\arctan \left(x^{2}\right)=t$ so we may construct a triangle. Notice that this implies $\tan (t)=x^{2}=\frac{x^{2}}{1}$.

Now that this triangle is constructed, we find that $\sin (t)=\frac{x^{2}}{\sqrt{1+x^{4}}}$. Since we assumed $t=\arctan \left(x^{2}\right)$ we have $\sin \left(\arctan \left(x^{2}\right)\right)=\sin (t)=\frac{x^{2}}{\sqrt{1+x^{4}}}$

