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1. Evaluate the integral ∫ 1

0

(
x+ 1√
1− x2

)
dx

Let x = sin(t)
dx = cos(t)dt

=

∫ π
2

0

(
sin(t) + 1√
1− sin2(t)

· cos(t)

)
dt =

∫ π
2

0

(
cos(t)(sin(t) + 1)

cos(t)

)
dt

=

∫ π
2

0

(sin(t) + 1)dt = t− cos(t)

∣∣∣∣π2
0

=
π

2
+ 1

2. Evaluate the limit.
lim
x→∞

√
x

1
ln(x)

= lim
x→∞

eln(
√
x

1
ln(x) ) = lim

x→∞
eln(x

1
2 ln(x) ) = elimx→∞

ln(x)
2 ln(x) = elimx→∞

1
2 = e

1
2

3. Rewrite sin(2 arctan(x)) as an expression solely in x.

First recall the fact that sin(2x) = 2 sin(x) cos(x)
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To proceed, we will assume that arctan(x) = t so we may construct a
triangle. Notice that this implies tan(t) = x = x

1
.

1

x

√
1 + x2

t

So, based on our triangle we have that sin(t) = x√
1+x2

and cos(t) = 1√
1+x2

.

But, recall we said arctan(x) = t. Thus, we have:

sin(2 arctan(x)) = sin(2t) = 2 sin(t) cos(t) = 2
x√

1 + x2
· 1√

1 + x2
=

2x

1 + x2

4. Determine the volume generated by the region bounded by the given
curves when revolved about the given axis:

y = 1
x2

x = 1

x = 2

y = 0

about the y-axis

V = 2π

∫ 2

1

(
x · 1

x2

)
dx = 2π ln |x|

∣∣∣∣2
1

= 2π ln 2

5a. Find y′ for
y = esin

2(lnx)

y′ = esin
2(lnx) · 2 sin(lnx) · cos(lnx) · 1

x

y′
1
=
esin

2(lnx) sin(2 lnx)

x

1: Note we used the fact sin(2θ) = 2 sin(θ) cos(θ). If you let θ = lnx the
reduction applied is apparent.
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5b. Find y′ for
y = xln

2 x

ln y = ln(xln
2 x) = ln2 x · lnx = ln3 x

1

y
y′ =

3 ln2 x

x

y′ =
3y ln2 x

x
=

3xln
2 x ln2 x

x
= 3xln

2(x)−1 ln2 x

6a. Evaluate the following integral∫ π
2

0

(
cos(x)√

sin2(x) + 1

)
dx

Let u = sin(x)
du = cos(x)dx

=

∫ 1

0

(
1√

u2 + 1

)
du

Let u = tan(t)
du = sec2(t)dt

=

∫ π
4

0

(
1√

tan2(t) + 1
· sec2(t)

)
dt =

∫ π
4

0

(
sec2(t)√
sec2(t)

)
dt =

∫ π
4

0

(sec(t))dt

= ln | sec(t) + tan(t)|
∣∣∣∣π4
0

= ln(
√

2 + 1)− ln(1 + 0) = ln(1 +
√

2)

6b. Evaluate the following integral∫ 1

0

(
x

1 + x4

)
dx

Let u = x2

du = 2xdx
1
2
du = xdx
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=
1

2

∫ 1

0

(
1

1 + u2

)
du =

1

2
arctan(u)

∣∣∣∣1
0

=
π

8

6c Evaluate the following integral∫ (
1

x
√

1− ln2 x

)
dx

Let u = lnx
du = 1

x
dx

=

∫ (
1√

1− u2

)
du

Let u = sin(t)
du = cos(t)dt

=

∫ (
1√

1− sin2(t)
· cos(t)

)
dt =

∫ (
cos(t)√
cos2(t)

)
dt =

∫
(1)dt = t+ C

= arcsin(u) + C = arcsin(lnx) + C

7. If f(x) = 3x3 + 5x+ 11 and g = f−1, then find g′(3).

Notice that since g and f are invertible, we have that g(f(x)) = x. But
this means that if we different, we obtain the following:

g′(f(x)) · f ′(x) = 1→ g′(f(x)) =
1

f ′(x)

g′(f(x)) =
1

9x2 + 5

Thus, to find g′(3) it should be apparent that we need to solve for 3 = f(x)
and then we plug into the formula we just found and we are done.

3 = f(x) = 3x3 + 5x+ 11
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0 = 3x3 + 5x+ 8

0 = (x+ 1)(3x2 − 3x+ 8)

So, x = −1 or x = 3±i
√
87

6
. We will ignore the complex solutions. Thus,

we find that x = −1 is our desired value.

Thus, g′(3) = g′(f(−1)) = 1
9(−1)2+5

= 1
14

.

8. Find y′ if y = πx + xπ + eπ.

Recall the useful formula d
dx

[ax] = ax ln a, a 6= 0. Notice how a is constant
in this case.

Next, recall d
dx

[xn] = nxn−1, n 6= 0. Notice how in this case, n is a
constant.

Lastly, also notice that eπ is nothing more than a number raised to another
number and is thus a constant, so its derivative is 0.

Thus, we have that y′ = πx ln(π) + πxπ−1

9. Rewrite sin(arctan(x2)) as an expression in x (i.e. rewrite this expres-
sion without using any trigonometric or inverse trigonometric functions).

To proceed, we will assume that arctan(x2) = t so we may construct a
triangle. Notice that this implies tan(t) = x2 = x2

1
.

1

x2

√
1 + x4

t

Now that this triangle is constructed, we find that sin(t) = x2√
1+x4

. Since

we assumed t = arctan(x2) we have sin(arctan(x2)) = sin(t) = x2√
1+x4
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