Dan Balaguy
Math 31 Summer 2019

Exam 1 Solutions

June 18, 2019

1. Evaluate the integral

Let x = sin(t)
dx = cos(t)dt
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2. Evaluate the limit.
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3. Rewrite sin(2 arctan(x)) as an expression solely in x.

First recall the fact that sin(2z) = 2sin(x) cos(x)



To proceed, we will assume that arctan(z) = ¢ so we may construct a
triangle. Notice that this implies tan(t) = x = %
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So, based on our triangle we have that sin(t) = —== and cos(t) = \/117

But, recall we said arctan(x) = ¢t. Thus, we have:
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sin(2arctan(z)) = sin(2t) = 2sin(t) cos(t) = 2—— L 2

4. Determine the volume generated by the region bounded by the given
curves when revolved about the given axis:
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5a. Find 3/ for
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1: Note we used the fact sin(20) = 2sin(6) cos(). If you let § = Inz the
reduction applied is apparent.



5b. Find 3/ for
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6a. Evaluate the following integral
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Let u = sin(x)
du = cos(z)dx
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Let u = tan(t)
du = sec?(t)dt

— In|sec(t) + tan(®)|| = (V2 + 1) — In(1 + 0) = In(1 + v2)
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6b. Evaluate the following integral
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Let u = 22
du = 2zdx
%du = xdx
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6¢ Evaluate the following integral
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Let u = sin(t)
du = cos(t)dt
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= arcsin(u) + C' = arcsin(lnz) + C

7. If f(z) =32 + 5x + 11 and g = f~!, then find ¢'(3).

Notice that since g and f are invertible, we have that ¢g(f(z)) = x. But
this means that if we different, we obtain the following:
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Thus, to find ¢’(3) it should be apparent that we need to solve for 3 = f(z)
and then we plug into the formula we just found and we are done.

3= f(z) =32 +5x+11



0=32"+5r+8
0= (x+1)(32% — 3z +8)

So,x =—1lorz= %. We will ignore the complex solutions. Thus,
we find that x = —1 is our desired value.

Thus, ¢'(3) = ¢'(f(-1)) = 9(—11)2+5 - ﬁ'

8 Find ¢/ if y = 7% + 2™ 4+ €".

Recall the useful formula %[ax] = a”Ina,a # 0. Notice how a is constant
in this case.
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Next, recall £[z"] = na"*,n # 0. Notice how in this case, n is a

constant.

Lastly, also notice that €™ is nothing more than a number raised to another
number and is thus a constant, so its derivative is 0.
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Thus, we have that ¢ = 7% In(7) + 7z

9. Rewrite sin(arctan(z?)) as an expression in x (i.e. rewrite this expres-
sion without using any trigonometric or inverse trigonometric functions).

To proceed, we will assume that arctan(z?) =
2 2

triangle. Notice that this implies tan(t) = 2* = =-.

t so we may construct a
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Now that this triangle is constructed, we find that sin(t) = . Since
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we assumed ¢ = arctan(z?) we have sin(arctan(z?)) = sin(t) =



