1. $\quad P(t)=(t+10)^{2}$
2. $P(t)=(t+4)^{2}$
3. $P(t)=10 \sqrt[3]{\frac{7}{3} t+1}$
4. $C(t)=\frac{1}{100,000}\left(1-e^{t}\right) \mathrm{g} / \mathrm{gal}$
5. $A(t)=\frac{10 t+200,000}{t+100} \mathrm{~g}$
6. Sorry, this was an unfair question. It required knowledge of solving a system of differential equations. I will leave this for Math 33.
7. i) $T(t)=T_{m}+A e^{k t}$
ii) $T(t)=85+165 e^{\frac{t}{8} \ln \frac{9}{11}}$ and $t=\frac{8 \ln \frac{19}{33}}{\ln \frac{9}{11}}$ minutes when $T=180^{\circ}$
8. Change the question to: How long will it take for the population to reach 700 ?
$P(t)=\frac{L P_{0}}{P_{0}+\left(L-P_{0}\right) e^{-L k t}}$ where $L=\frac{8000}{7}$ and $k=\frac{7}{80,000} \ln 9$ and $P(t)=700$ when $t \approx 3.1$ yrs.

More to come as I find the time.

