1. Use the ε, δ definition of the limit to prove $\lim _{x \rightarrow 5}(2 x-3)=7$
2. Prove that $\lim _{x \rightarrow 3}\left(x^{2}+2 x-5\right)=10$
3. In answering the following question, round all values to the nearest 0.01 .

Given $f(x)=\frac{1}{x-2}, \lim _{x \rightarrow 3} f(x)=1$, and $\varepsilon=0.1$, find the largest value of δ such that If $0<|x-3|<\delta$, then $|f(x)-1|<\varepsilon$.
4. Use the ε, δ definition of the limit to prove $\lim _{x \rightarrow 5}(3 x-4)=11$
5. Prove that $\lim _{x \rightarrow 2}\left(x^{2}-3 x+3\right)=1$
6. Prove that $\lim _{x \rightarrow 2}\left(2 x^{2}-x-2\right)=4$

More:

1. $\lim _{x \rightarrow 2}\left(x^{2}-3 x+5\right)=3$
2. $\lim _{x \rightarrow 1}\left(x^{2}+5 x+4\right)=10$
3. $\lim _{x \rightarrow-1}\left(3 x^{2}-x+4\right)=8$
