1. Use the ε, δ definition of the limit to prove $\lim _{x \rightarrow 5}(2 x-3)=7$

- Part 1: Find a δ that works:

Given $\varepsilon>0$, we need to find a δ such that :

$$
\begin{array}{ll}
|2 x-3-7|<\varepsilon & \text { whenever } 0<|x-5|<\delta \\
|2 x-10|<\varepsilon & \text { whenever } \\
|2(x-5)|<\varepsilon & \text { whenever } \\
2|x-5|<\varepsilon & \text { whenever }
\end{array}
$$

So, choose $\delta=\varepsilon / 2$

- Part 2: Show that this δ works:

Given $\varepsilon>0$, choose $\delta=\varepsilon / 2$
If $0<|x-5|<\delta$, then $|2 x-3-7|=|2 x-10|$

$$
=|2(x-5)|
$$

$$
=2|x-5|
$$

$$
<2 \cdot \delta
$$

$$
=2 \cdot \varepsilon / 2
$$

$$
=\varepsilon
$$

$1 \therefore \lim _{x \rightarrow 5}(2 x-3)=7$
2. Prove that $\lim _{x \rightarrow 3}\left(x^{2}+2 x-5\right)=10$:

Part I: Find a δ that works:
Given an $\varepsilon>0$, we need a $\delta>0$ such that

$$
\left|\left(x^{2}+2 x-5\right)-10\right|<\varepsilon \text { whenever } 0<|x-3|<\delta
$$

But $\left|\left(x^{2}+2 x-5\right)-10\right|<\varepsilon$ whenever $0<|x-3|<\delta$
is equivalent to:

$$
\begin{array}{ll}
\left|x^{2}+2 x-15\right|<\varepsilon & \text { whenever } 0<|x-3|<\delta \\
|(x+5)(x-3)|<\varepsilon & \text { whenever } 0<|x-3|<\delta \\
|x+5| \cdot|x-3|<\varepsilon & \text { whenever } 0<|x-3|<\delta
\end{array}
$$

If we can find some number C such that $|x+5|<C$, then we will have that

$$
|x-3|<\varepsilon / C \text {, and we will choose } \delta=\varepsilon / C
$$

Aside: Find C :
A reasonable choice for δ is 1 . If we choose $\delta=1$, then we have that:

$$
\begin{gathered}
0<|x-3|<1 \\
-1<x-3<1 \\
7<x+5<9 \\
|x+5|<9
\end{gathered}
$$

So, we now have a value for C to be 9 . Thus, an alternative to 1 as a choice for δ is $\varepsilon / 9$.
Now that we have two values for δ, to ensure that we obtain the desired tolerance value ε, we will choose $\delta=\min \{1, \varepsilon / 9\}$.
Part II: Show that our choice for δ works:
Given $\varepsilon>0$, choose $\delta=\min \{1, \varepsilon / 9\}$.
If $0<|x-3|<\delta$, then $\left|\left(x^{2}+2 x-5\right)-10\right|=\left|x^{2}+2 x-15\right|$

$$
\begin{aligned}
& =|(x+5)(x-3)| \\
& =|x+5| \cdot|x-3|
\end{aligned}
$$

Note: If $\delta=1$, then $0<|x-3|<1$

$$
\begin{array}{lr}
\text { which implies }-1<x-3<1 \\
\text { i.e., } & 7<x+5<9 \\
\text { or } & |x+5|<9
\end{array}
$$

But, if $\delta=\varepsilon / 9$, then we have that $0<|\mathrm{x}-3|<\varepsilon / 9$
Now we have that $\left|\left(x^{2}+2 x-5\right)-10\right|=|x+5| \cdot|x-3|$

$$
\begin{aligned}
& <9 \cdot \varepsilon / 9 \\
& =\varepsilon
\end{aligned}
$$

We have shown that If $0<|x-3|<\delta$, then $\left|\left(x^{2}+2 x-5\right)-10\right|<\varepsilon$
$1 \therefore \lim _{x \rightarrow 3}\left(x^{2}+2 x-5\right)=10$
3. In answering the following problem, round all values to the nearest 0.01 .

Given $f(x)=\frac{1}{x-2}, \lim _{x \rightarrow 3} f(x)=1$, and $\varepsilon=0.1$, find the largest value of δ such that If $0<|x-3|<\delta$, then $|f(x)-1|<\varepsilon$. Draw a picture to support your claim.

- Note: To find the values of p and q in the above picture, solve the equations:

$$
\begin{array}{ll}
\frac{1}{p-2}=1.1 & \frac{1}{q-2}=0.9 \\
\frac{1}{1.1}=p-2 & \frac{1}{0.9}=q-2 \\
p=2+\frac{1}{1.1} & q=2+\frac{1}{0.9} \\
p \approx 2.91 & q \approx 3.11
\end{array}
$$

- Choose δ as follows:

$$
\begin{aligned}
\delta & =\min \{|3-p|,|3-q|\} \\
& =\min \{0.09,0.11\} \\
& =0.09
\end{aligned}
$$

Consider that the above suggests that if a value of x is chosen within 0.09 units from $3, f(x)$ is guaranteed to be within 0.1 units of 1 .
4. Use the ε, δ definition of the limit to prove $\lim _{x \rightarrow 5}(3 x-4)=11$

- Part 1: Find a δ that works:

Given $\varepsilon>0$, we need to find a δ such that :

$$
\begin{array}{llc}
|3 x-4-11|<\varepsilon & \text { whenever } & 0<|x-5|<\delta \\
|3 x-15|<\varepsilon & \text { whenever } & " \\
|3(x-5)|<\varepsilon & \text { whenever } & " \\
3|x-5|<\varepsilon & \text { whenever } & " \\
|x-5|<\varepsilon / 3 & \text { whenever } & "
\end{array}
$$

So, choose $\delta=\varepsilon / 3$

- Part 2: Show that this δ works:

Given $\varepsilon>0$, choose $\delta=\varepsilon / 3$
If $0<|x-5|<\delta$, then $|3 x-4-11|=|3 x-15|$

$$
\begin{aligned}
& =|3(x-5)| \\
& =3|x-5| \\
& <3 \cdot \delta \\
& =3 \cdot \varepsilon / 3 \\
& =\varepsilon
\end{aligned}
$$

$$
/ \therefore \lim _{x \rightarrow 5}(3 x-4)=11
$$

5. Prove that $\lim _{x \rightarrow 2}\left(x^{2}-3 x+3\right)=1$:

Part I: Find a δ that works:
Given an $\varepsilon>0$, we need a $\delta>0$ such that

$$
\left|\left(x^{2}-3 x+3\right)-1\right|<\varepsilon \text { whenever } 0<|x-2|<\delta
$$

But $\left|\left(x^{2}-3 x+3\right)-1\right|<\varepsilon$ is equivalent to:

$$
\left|x^{2}-3 x+2\right|<\varepsilon
$$

$$
|(x-1)(x-2)|<\varepsilon
$$

$$
|x-1| \cdot|x-2|<\varepsilon
$$

If we can find some number C such that $|x-1|<C$, then we will have that

$$
|x-2|<\varepsilon / C, \text { and we will choose } \delta=\varepsilon / C
$$

Aside: Find C :
A reasonable choice for δ is 1 . If we choose $\delta=1$, then we have that:

$$
\begin{array}{r}
0<|x-2|<1 \\
-1<x-2<1 \\
0<x-1<2 \\
|x-1|<2
\end{array}
$$

So, we now have a value for C to be 2. Thus, an alternative to 1 as a choice for δ is $\varepsilon / 2$.
Now that we have two values for δ, to ensure that we obtain the desired tolerance value ε, we will choose $\delta=\min \{1, \varepsilon / 2\}$.
Part II: Show that our choice for δ works:
Given $\varepsilon>0$, choose $\delta=\min \{1, \varepsilon / 2\}$.
If $0<|x-2|<\delta$, then $\left|\left(x^{2}-3 x+3\right)-1\right|=\left|x^{2}-3 x+2\right|$

$$
\begin{aligned}
& =|(x-1)(x-2)| \\
& =|x-1| \cdot|x-2|
\end{aligned}
$$

Note: If $\delta=1$, then $0<|x-2|<1$
Which implies $-1<x-2<1$
i.e., $\quad 0<x-1<2$
or $\quad|x-1|<2$
But, if $\delta=\varepsilon / 2$, then we have that $0<|x-2|<\varepsilon / 2$
Now we have that $\left|\left(x^{2}-3 x+3\right)-1\right|=|x-1| \cdot|x-2|$

$$
\begin{aligned}
& <2 \cdot \varepsilon / 2 \\
& =\varepsilon
\end{aligned}
$$

We have shown that If $0<|x-2|<\delta$, then $\left|\left(x^{2}-3 x+3\right)-1\right|<\varepsilon$
$1 \therefore \lim _{x \rightarrow 3}\left(x^{2}-3 x+3\right)=1$
6. Prove that $\lim _{x \rightarrow 2}\left(2 x^{2}-x-2\right)=4$:

Part I: Find a δ that works:
Given an $\varepsilon>0$, we need a $\delta>0$ such that

$$
\left|\left(2 x^{2}-x-2\right)-4\right|<\varepsilon \text { whenever } 0<|x-2|<\delta
$$

But $\left|\left(2 x^{2}-x-2\right)-4\right|<\varepsilon$ whenever $0<|x-2|<\delta$
is equivalent to:

$$
\begin{array}{ll}
\left|2 x^{2}-x-6\right|<\varepsilon & \text { whenever } 0<|x-2|<\delta \\
|(2 x+3)(x-2)|<\varepsilon & \text { whenever } 0<|x-2|<\delta \\
|2 x+3||x-2|<\varepsilon & \text { whenever } 0<|x-2|<\delta
\end{array}
$$

If we can find some number C such that $|2 x+3|<C$, then we will have that

$$
|x-2|<\varepsilon / C \text {, and we will choose } \delta=\varepsilon / C \text {. }
$$

Aside: Find C :
A reasonable choice for δ is 1 . If we choose $\delta=1$, then we have that:

$$
\begin{gathered}
0<|x-2|<1 \\
-1<x-2<1 \\
-2<2 x-4<2 \\
5<2 x+3<9 \\
|2 x+3|<9
\end{gathered}
$$

So, we now have a value for C to be 9 . Thus, an alternative to 1 as a choice for δ is $\varepsilon / 9$.
Now that we have two values for δ, to ensure that we obtain the desired tolerance value ε, we will choose $\delta=\min \{1, \varepsilon / 9\}$.
Part II: Show that our choice for δ works:
Given $\varepsilon>0$, choose $\delta=\min \{1, \varepsilon / 9\}$.
If $0<|x-2|<\delta$, then $\left|\left(2 x^{2}-x-2\right)-4\right|=\left|2 x^{2}-x-6\right|$

$$
\begin{aligned}
& =|(2 x+3)(x-2)| \\
& =|2 x+3| \cdot|x-2|
\end{aligned}
$$

Note: If $\delta=1$, then $0<|x-2|<1$

$$
\begin{array}{lr}
\text { which implies }-1<x-2<1 \\
\text { so } & -2<2 x-4<2 \\
\text { i.e., } & 5<2 x+3<9 \\
\text { or } & |2 x+3|<9
\end{array}
$$

But, if $\delta=\varepsilon / 9$, then we have that $0<|x-2|<\varepsilon / 9$
Now we have that $\left|\left(2 x^{2}-x-2\right)-4\right|=|2 x+3| \cdot|x-2|$

$$
\begin{aligned}
& <9 \cdot \varepsilon / 9 \\
& =\varepsilon
\end{aligned}
$$

We have shown that If $0<|x-2|<\delta$, then $\left|\left(2 x^{2}-x-2\right)-4\right|<\varepsilon$
$1 \therefore \lim _{x \rightarrow 2}\left(2 x^{2}-x-2\right)=4$

