1. Provide a counter example for each of the following (let $x, y \in \mathbb{R}$):
i) $\quad \forall x \exists y(x=1 / y)$
ii) $\quad \forall x \exists y\left(y^{2}-x<10\right)$
iii) $\forall x \forall y\left(x^{2} \neq y^{3}\right)$
iv) $\forall x \forall y\left(x^{2}=y^{2} \rightarrow x=y\right)$
v) $\forall x \exists y\left(y^{2}=x\right)$
vi) $\quad \forall x \forall y(x y \geq x)$
2. Let $R(x, y)$ be the statement "person x reads book y ", and the universe of discourse for x and y be all Sierra College students and all Discrete Math books, respectively. Translate each of the following symbolically:
i) Every Sierra College student has read a Discrete Math book.
ii) A sierra College student has read all Discrete Math books.
iii) No Sierra College student has read all Discrete Math books.
iv) Every Sierra College student who has read a Discrete Math book will either be tired or will be happy (let $T(x)$ be the sentence " x will be tired" and $H(x)$ be the sentence x will be happy).
3. Let $M(x, y)$ mean x admires y. Translate each of the following into words (write in a manner which is most likely stated in public):
i) $\quad \exists x \exists y((x \neq y) \wedge(M(1, x) \wedge M(1, y)))$
ii) $\quad \exists x \exists y \forall z((x \neq y) \wedge(M(x, z) \rightarrow M(y, z)))$
iii) $\quad \forall x \exists y(M(x, y) \wedge \forall z((z \neq y) \rightarrow \neg M(x, z)))$
4. Let $K(x, y)$ be the sentence " x knows y ". Allowing the universe of discourse be all persons, translate each of the following symbolically:
i) Anyone who knows Archimedes knows Pythagoras.
ii) There is someone whom no one knows.
iii) Someone knows nobody.
iv) Everyone loves only one other.
