Verify each of the following mathematical statements using Mathematical Induction:

1. $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$ for all $n \in Z^{+}$
2. $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ for all $n \in Z^{+}$
3. $\quad \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad \forall n \in N$
4. $1^{4}+2^{4}+3^{4}+\cdots+n^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30} \quad \forall n \in N$
5. $\quad 6 \cdot 7^{n}-2 \cdot 3^{n}$ is divisible by 4 .
6. $\quad \sum_{i=1}^{n} i(i!)=(n+1)!-1 \quad \forall n \in N$
7. $11^{n}-5^{n}$ is divisible by $3 \forall n \in N$
8. Let $f_{n}$ be the $\mathrm{n}^{\text {th }}$ Fibonacci number. $\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]^{n}=\left[\begin{array}{cc}f_{n-1} & f_{n} \\ f_{n} & f_{n+1}\end{array}\right] \quad \forall n \in N$
9. $\sin x+\sin 3 x+\sin 5 x+\cdots+\sin (2 n-1) x=\frac{1-\cos 2 n x}{2 \sin x} \quad \forall n \in N$

More Examples:

1. $2^{2 n}-1$ is divisible by $3 \forall n \in N$
2. $2 n+1<2^{n} \quad \forall n \geq 3$
3. $2^{n}<(n+1)!\quad \forall n \geq 2$
4. $\quad 7^{n}-2^{n}$ is divisible by $5 \quad \forall n \in N$
5. $3^{2 n}-1$ is divisible by $8 \quad \forall n \in N$
6. $n^{2}<n!\quad \forall n \geq 4$
7. Prove that the sum of the first $n$ terms of a geometric series is given by the following two ways: directly and using mathematical induction.

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad \forall n \in N
$$

