1. Determine if $(G, *)$ is a group. If it is, identify the identity element and each element's inverse:
i) $\quad G=\{-1,1\}$ and * is addition
ii) $\quad G=\{-1,1\}$ and * is multiplication
iii) $\quad G=[-1,1]$ and * is addition
iv) $\quad G=[-1,1]$ and $*$ is multiplication
v) $\quad G=\{-1,0,1\}$ and * is addition
vi) $\quad G=\{-1,1, i,-i\}$ and * is multiplication
vii) $G=\{1\}$ and * is multiplication
viii) $\quad G=\left\{\frac{a}{2^{n}}\right\}$ where $a \in \mathbb{Z} \backslash\{0\}$ and $n \in \mathbb{Z}$ and $*$ is multiplication
2. If $G=\mathbb{Z}$ and $a * b=a+b+1 \forall a, b \in G$, then $(G, *)$ is a group. Verify that the four criteria for being a group are indeed satisfied.
3. Prove that $f(A \cup(B \cap C)) \subseteq f(A) \cup[f(B) \cap f(C)]$
4. Is $f(A) \cup[f(B) \cap f(C)] \subseteq f(A \cup(B \cap C))$? If so, prove it. If not, provide a counter-example.
