- 1. Determine if (G,*) is a group. If it is, identify the identity element and each element's inverse:
 - i) $G = \{-1,1\}$ and * is addition
 - ii) $G = \{-1,1\}$ and * is multiplication
 - iii) G = [-1,1] and * is addition
 - iv) $G = \begin{bmatrix} -1,1 \end{bmatrix}$ and * is multiplication
 - v) $G = \{-1,0,1\}$ and * is addition
 - vi) $G = \{-1, 1, i, -i\}$ and * is multiplication
 - vii) $G = \{1\}$ and * is multiplication
 - viii) $G = \left\{ \frac{a}{2^n} \right\}$ where $a \in \mathbb{Z} \setminus \{0\}$ and $n \in \mathbb{Z}$ and * is multiplication
- 2. If $G = \mathbb{Z}$ and $a * b = a + b + 1 \forall a, b \in G$, then (G, *) is a group. Verify that the four criteria for being a group are indeed satisfied.
- 3. Prove that $f(A \cup (B \cap C)) \subseteq f(A) \cup [f(B) \cap f(C)]$
- 4. Is $f(A) \cup [f(B) \cap f(C)] \subseteq f(A \cup (B \cap C))$? If so, prove it. If not, provide a counter-example.