Solve the following systems of equations. With questions 1 and 5 , use all three of our new techniques. With questions 2, 3, and 4, merely use Gauss-Jordan Elimination.
1.

$$
\begin{aligned}
2 x-2 y-4 z & =-6 \\
2 x+y-z & =-3 \\
x+y+2 z & =5
\end{aligned}
$$

2. 

$$
\begin{aligned}
x+y-z & =2 \\
y+z & =3 \\
-2 x+3 y+7 z & =11
\end{aligned}
$$

3. 

$$
\begin{gathered}
2 x-2 y-4 z=-6 \\
-x+y+2 z=3 \\
x-y-2 z=-3
\end{gathered}
$$

4. 

$$
\begin{gathered}
2 x-2 y-4 z=-6 \\
-x+y+2 z=3 \\
x-y-2 z=3
\end{gathered}
$$

5. 

$$
\begin{gathered}
2 x-2 y-4 z=0 \\
2 x+y-2 z=8 \\
x+y+2 z=4
\end{gathered}
$$

6. Determine the solutions to the system of linear equations for which the following augmented matrix represents:

$$
\left[\begin{array}{ccccc|c}
1 & 0 & -4 & 2 & 1 & 3 \\
0 & 1 & 5 & -3 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

7. Determine the solutions to the system of linear equations for which the following augmented matrix represents:

$$
\left[\begin{array}{ccccc|c}
1 & 0 & -4 & 2 & 1 & 3 \\
0 & 1 & 5 & -3 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

8. Determine the solutions to the system of linear equations for which the following augmented matrix represents:

$$
\left[\begin{array}{ccccc|c}
1 & 0 & -4 & 2 & 1 & 3 \\
0 & 1 & 5 & -3 & 2 & -1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

