Provide a clear and organized presentation. Show all of your work, completely simplify your answers, and give exact values only.

1. (10 pts) Consider the following:
i) Given $a=p^{c} q^{d} r^{e}$ and $b=p^{d} q^{e} r^{c}$ where all letters are natural numbers and $d<c<e$. Determine both the gcd and the Icm of a and b.
ii) Express the Icm of two natural numbers m and n in terms of their gcd.
iii) Under what circumstances is $\operatorname{gcd}(m, n)=\operatorname{lcm}(m, n)=p^{2}$ where m and n are two natural numbers and p is prime.
2. (5 pts) Solve the following system using Gauss-Jordan elimination:

$$
\begin{aligned}
& 2 x_{1}-x_{2}+3 x_{3}+x_{4}-2 x_{5}=1 \\
& 3 x_{1}+x_{2}-x_{3}+2 x_{4}+2 x_{5}=1 \\
& 4 x_{1}-7 x_{2}+17 x_{3}+x_{4}-14 x_{5}=1
\end{aligned}
$$

3. (10 pts) Consider the set $\left.S=\mathbb{N} W^{\prime} 1\right\}$ where $a R b$ means that a and b are not relatively prime (i.e., a and b are relatively prime if a and b share no common prime factors)
i) Is this relation reflexive? Symmetric? Transitive?
ii) Does this relation partition S ?
4. (10 pts) Use a generating function to rewrite the following recurrence relation as an explicit formula for the nth term of the sequence:

$$
a_{n}=a_{n-2}-a_{n-1} \text { where } a_{0}=0 \text { and } a_{1}=1
$$

5. (5 pts) Prove that the identity element of a group is unique.
