PARTIAL DERIVATIVES

One practical application of partial derivatives is to determine whether two products are substitute (competitive) products, such as bread and biscuits  or complementary products (products that go together), such as tires and hubcaps.   

Recall that the derivative of a single variable function 
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) on the graph defined by the function.  The derivative tells us the  (instantaneous)  rate of change of the function at that given point 
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Similarly, the partial derivative of a multivariable function, 
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 on the graph , where the graph lies on a three dimensional surface given by a function of two variables 
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 This graph (which is often a curve) is formed in a special way:  by intersecting the plane, such as 
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 constant), with the three dimensional surface given by a function of two variables 
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    See the figure below.
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The partial derivative of  z with respect to x  at the point 
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],  is the slope of the tangent line at that given point  
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 , in the domain of f, on a curve in the x-direction  holding y  constant.  That is, this tangent line is in the same direction as the x -axis.  The partial derivative also tells us rate of change of the function f  in the x-direction,  when  
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Similarly,  the  partial derivative of  z with respect to y  at the point 
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 , in the domain of f, on a curve in the  y-direction holding x  constant.  That is, this tangent line is in the same direction as the y -axis.    The partial derivative also tells us rate of change of the function f  in the  y-direction , when  
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Here, the graph (which is often a curve) is formed  by intersecting the plane, such as 
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 constant), with the three dimensional surface given by a function of two variables 
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[image: image87.png]Plane: y =3,

(a) £,(x,y,) = slope in x-direction




FORMAL DEFINITIONS OF FIRST PARTIAL DERIVATIVES OF f(x,y)

Suppose f(x,y) is a function of two variables x and y.  Then, the first partial derivative of f with respect to x at a given point (x,y) is 
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Suppose f(x,y) is a function of two variables x and y.  Then, the first partial derivative of f with respect to y at a given point (x,y) is 
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Instead of using these formal definitions, we often use modifications of the product rule, quotient rule, etc to find partial derivatives.

Study the examples on the following pages, along with the other examples presented in class.

EXAMPLES

(A)  Find the derivative of 
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(B)  Find the partial derivative of 
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with respect to x;

 that is, find  
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To do this, we regard all the “y” terms as constants since we are finding the derivative with respect to x.  Recall the derivative of a constant is 0.

To do this, rewrite the polynomial by putting parenthesis around the “x” terms to clarify that we are finding the derivative with respect to x.

Let 
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(C)  Find the partial derivative of 
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with respect to y; that is, find  
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To do this, we regard all the “x” terms as constants since we are finding the derivative with respect to y.  Recall the derivative of a constant is 0.

To do this, rewrite the polynomial by putting parenthesis around the “y” terms to clarify that we are finding the derivative with respect to y.

Let 
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(D)  Find the  first partial derivatives  of 
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with respect to x and y; that is, find (i) 
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(i)  To find   
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 , we regard all the “y” terms as constants since we are finding the derivative with respect to x.    Recall the derivative of a constant is 0.

To do this, rewrite the function by putting parenthesis around the “x” terms to clarify that we are finding the derivative with respect to x.

Let  
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, and use the quotient rule:
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Therefore, 
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(ii)  To find   
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 , we regard all the “x” terms as constants since we are finding the derivative with respect to y.    Recall the derivative of a constant is 0.

To do this, rewrite the function by putting parenthesis around the “y” terms to clarify that we are finding the derivative with respect to y.
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(E) Find the  first partial derivatives  of 
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with respect to x and y; that is, find (i) 
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(F)  Find the  first partial derivatives  of 
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with respect to x and y; that is, find (i) 
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(G) Find the  first partial derivatives  of 
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with respect to s and t; that is, find (i) 
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