Provide a clear and organized presentation. Show all of your work, completely simplify all answers, and give exact values only.

1. (10 pts) Determine a value of x that satisfies the conclusion of the Mean Value Theorem for f over the interval $[1,4]$ if $f(x)=x+\sqrt{x}$
2. (7 pts) Apply three iterations of Newton's Method of Approximation to approximate the x-coordinate of the point of intersection between the graphs of $y=\ln x$ and $y=-x+2$
3. (17 pts) Clearly sketch the graph of $y=x^{3}-x$ and label in your graph all intercepts, local extrema, inflection points, and asymptotes
4. (17 pts) A Montanan rancher encloses a rectangular region bordering a river with fencing material that is not necessary against the river, but costs $\$ 2 / \mathrm{ft}$ for the fencing material that is perpendicular to the river and costs $\$ 3 / f t$ for the fencing material that is parallel to the river. If the area of the enclosed region is to be $2000 \mathrm{ft}^{2}$, then what dimensions of this rectangular region minimize the cost?

5. (17 pts) Clearly sketch the graph of $y=x^{\frac{6}{5}}-x^{\frac{1}{5}}$ and label in your graph all intercepts, local extrema, inflection points, and asymptotes
6. (17 pts) Determine the dimensions of the right circular cylinder inscribed in a sphere of radius r that has maximum volume.
7. (17 pts) Clearly sketch the graph of $y=\frac{x-2}{(x+2)^{2}}$ and label in your graph all intercepts, local extrema, inflection points, and asymptotes
