Mathematics 13 : Elementary Statistics

Unit 4 : Section 2

The Chi-Squared Goodness-of-Fit Test

The Chi-Squared Goodness-of-Fit Test is a versatile inferential statistics method used in the analysis of categorical data. Specifically, the Chi-Squared Goodness-of-Fit Test is a hypothesis testing procedure used to determine if the expected frequencies for the categories of a qualitative variable reasonably match (or fi) the observed frequencies for these categories in a sample.

The Chi-Squared Goodness-of-Fit Test

The Chi-Squared
Goodness-of-Fit Test
is used to determine if the expected frequencies fit the observed frequencies
State hypothesis
H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencies fit the observed frequencies

Use $\alpha=0.05$

(unless stated otherwise)
Enter the observed frequencies (data) in L_{1}
Enter the expected frequencies ($\mathrm{n} \cdot \mathrm{p}$) in L_{2} X^{2} GOF-Test

Decision:
Reject H_{0} when p -value $\leq \alpha$
Otherwise do not reject H_{0}
State conclusion

The Chi-Squared Goodness-of-Fit Test begins with the formation of a hypothesis which is used to generate the expected
frequencies.
The stated hypotheses
(H_{0} and H_{1}) are always expressed in the same manner.

The Chi-Squared Goodness-of-Fit Test

Unless there exists a compelling reason to do so otherwise, hypothesis testing procedures are conducted using the customary 5% level of significance.

> | The Chi-Squared |
| :---: |
| > Goodness-of-Fit Test |
| is used to determine if the expected |
| frequencies fit the observed frequencies > | \left\lvert\, \(\begin{aligned} \& State hypothesis
 \& \mathrm{H}_{0} : All of the expected frequencies fit

> \& the observed frequencies
 \& \mathrm{H}_{1}: Not all of the expected frequencies
 \& fit the observed frequencies\end{aligned}\right.\)

Enter the observed frequencies (data) in L_{1} Enter the expected frequencies ($\mathrm{n} \cdot \mathrm{p}$) in L_{2} X^{2} GOF-Test with $\mathrm{df}=\mathrm{c}-1$

Decision:

Reject H_{0} when p -value $\leq \alpha$
Otherwise do not reject H_{0}
State conclusion 20

The Chi-Squared Goodness-of-Fit Test

The expected frequencies are generated according to the particular hypothesis under investigation. These expected frequencies are based on the predicted proportions (p_{i}) of each category according to the hypothesis being tested.

The observed frequencies are determined by the actual sample data values.

The Chi-Squared Goodness-of-Fit Test

The Chi-Squared
Goodness-of-Fit Test
is used to determine if the expected frequencies fit the observed frequencies
State hypothesis
H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencies fit the observed frequencies
Use $\alpha=0.05$
(unless stated otherwise)
Enter the observed frequencies (data) in L_{1} Enter the expected frequencies ($\mathrm{n} \cdot \mathrm{p}$) in L_{2} X^{2} GOF-Test

Decision:
Reject H_{0} when p -value $\leq \alpha$
Otherwise do not reject H_{0}
State conclusion

Category	Observed Frequency	Expected
1	O_{1}	$E_{1}=n \cdot p_{1}$
2	O_{2}	$E_{2}=n \cdot p_{2}$
\vdots	\vdots	\vdots
c	O_{c}	$E_{c}=n \cdot p_{c}$

$\mathrm{O}_{1}+\mathrm{O}_{2}+\cdots+\mathrm{O}_{\mathrm{c}}=\mathrm{n}$

The Chi-Squared Goodness-of-Fit Test
The Chi-Squared
Goodness-of-Fit Test
is used to determine if the expected frequencies fit the observed frequencies State hypothesis
H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencies fit the observed frequencies
Use $\alpha=0.05$
(unless stated otherwise)
Enter the observed frequencies (data) in L_{1} Enter the expected frequencies ($\mathrm{n} \cdot \mathrm{p}$) in L_{2}
X^{2} GOF-Test
Decision:
Reject H_{0} when p -value $\leq \alpha$
Otherwise do not reject H_{0}
After the observed frequencies are entered into L_{1} and the expected frequencies are entered into L_{2}, the $X^{2} G O F-T e s t$ command on the TI-84 calculator will calculate the desired p-value for the hypothesis test procedure.

State conclusion
Lesson 42

The Chi-Squared Goodness-of-Fit Test

The Chi-Squared Goodness-of-Fit Test
is used to determine if the expected frequencies fit the observed frequencies State hypothesis
H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencies fit the observed frequencies

Use $\alpha=0.05$

(unless stated otherwise)
Enter the observed frequencies (data) in L_{1} Enter the expected frequencies ($\mathrm{n} \cdot \mathrm{p}$) in L
$\mathrm{X}^{2} \mathrm{GOF}-\mathrm{Test}$
with $\mathrm{df}=\mathrm{c}-1$
Decision:
Reject H_{0} when p -value $\leq \alpha$
Otherwise do not reject H_{0}
State conclusion

The Chi-Squared Goodness-of-Fit Test

The Chi-Squared
Goodness-of-Fit Test
is used to determine if the expected frequencies fit the observed frequencies State hypothesis
H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencies fit the observed frequencies
Use $\alpha=0.05$
(unless stated otherwise)
Enter the observed frequencies (data) in L_{1} Enter the expected frequencies ($n \cdot \mathrm{p}$) in L_{2}
X^{2} GOF-Test
Decision:
Reject H_{0} when p -value $\leq \mathrm{\alpha}$
Otherwise do not reject H_{0}
State conclusion

In order for the Chi-Squared Goodness-of-Fit Test to be applied, the independent random sample must be sufficiently large. This can be accomplished by ensuring that the sample size is large enough so that all (or nearly all) of the expected frequencies are 5 or more. Also, none of the expected frequencies should equal 0 .

The Chi-Squared Goodness-of-Fit Test
is used to determine if the expected frequencies fit the observed frequencies State hypothesis
H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencies fit the observed frequencies

Use $\alpha=0.05$

(unless stated otherwise)
Enter the observed frequencies (data) in L_{1} Enter the expected frequencies ($n \cdot p$ p) in L_{2}
X^{2} GOF-Test
with $d f=c-1$
Decision:
Reject H_{0} when p -value $\leq \alpha$ Otherwise do not reject H_{0}
State conclusion

When the expected frequencies fi the observed frequencies,
the Chi-Squared test statistic is relatively small (close to zero). This produces larger p-values.

$$
X^{2}=\sum_{i=1}^{c} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

The test statistic for this
hypothesis testing procedure is denoted by X^{2} (the Greek letter Chi squared).

Lesson 42

The Chi-Squared Goodness-of-Fit Test

The Chi-Squared Goodness-of-Fit Test is used to determine if the expected frequencies fit the observed frequencies State hypothesis
H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencie fit the observed frequencies
Use $\alpha=0.05$
(unless stated otherwise)
Enter the observed frequencies (data) in L_{1} Enter the expected frequencies ($\mathrm{n} \cdot \mathrm{p}$) in L_{2}
$\mathrm{X}^{2} \mathrm{GOF}$-Test
Decision:
with $d f=c-1$
Reject H_{0} when p -value $\leq \alpha$
Otherwise do not reject H_{0}
State conclusion

The calculated p-value is used to reach a decision regarding the validity of H_{0}.

Small p-values provide sample evidence contradicting H_{H}.
Large p-values provide sample evidence consistent with Ho .

The Chi-Squared Goodness-of-Fit Test

```
The Chi-Squared
Goodness-of-Fit Test
    is used to determine if the expected
frequencies fit the observed frequencies
State hypothesis
    H0: All of the expected frequencies fit
    the observed frequencies
    H1: Not all of the expected frequencies
        fit the observed frequencies
Use}\alpha=0.0
(unless stated otherwise)
Enter the observed frequencies (data) in L L
Enter the expected frequencies (n.pi) in L/ L
    X 'GOF-Test
        with df=c-1
Decision:
    Reject }\mp@subsup{\textrm{H}}{0}{}\mathrm{ when p-value }\leq
    Otherwise do not reject H0
```

State conclusion

When Ho is not rejected, the conclusion is that all of the expected frequencies fit the observed frequencies.

Thus, the hypothesis used to generate the expected frequencies is valid.

State conclusion
The Chi-Squared Goodness-of-Fit Test
The Chi-Squared
Goodness-of-Fit Test
is used to determine if the expected frequencies fit the observed frequencies
State hypothesis
H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencies fit the observed frequencies
Use $\alpha=0.05$
(unless stated otherwise)
Enter the observed frequencies (data) in L_{1} Enter the expected frequencies ($\mathrm{n} \cdot \mathrm{p}$) in L_{2} $\mathrm{X}^{2} \mathrm{GOF}$-Test

Decision
Reject H_{0} when p -value $\leq \alpha$
Otherwise do not reject H_{0}
State conclusion

When H_{0} is rejected, the conclusion is that not all of the expected frequencies fit the observed frequencies.

Thus, the hypothesis used to generate the expected frequencies is not valid.

Example 1

Gregor Mendel is considered to be the father of genetics. His hybridization experiments on pea plants (Pisum sativum) lead to the development of the fundamental principals of heredity.

In one such experiment, Mendel performed a dihybrid cross between pea plants that were heterozygous for both the seed shape (Rw) and seed color (Yg) traits.

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 1

According to Mendel's fundamental principles of segregation and independent assortment, if the round (R) seed shape trait is completely dominant over the wrinkled (w) seed shape trait and the yellow (Y) seed color trait is completely dominant over the green (g) seed color trait, the proportions of seeds produced by the pea plants resulting from this dihybrid cross are expected to be as follows :

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 1

When Mendel harvested the seeds produced by the pea plants resulting from this cross, he observed 315 seeds which were round in shape and yellow in color, 108 seeds which were round in shape and green in color, 101 seeds which were wrinkled in shape and yellow in color, and 32 seeds which were wrinkled in shape and green in color.
(the

Example 1

$$
\begin{array}{r}
p_{\text {round and yellow }}=p_{\text {round }} \cdot p_{\text {yellow }}=\frac{3}{4} \cdot \frac{3}{4}=\frac{9}{16} \\
p_{\text {round and green }}=p_{\text {round }} \cdot p_{\text {green }}=\frac{3}{4} \cdot \frac{1}{4}=\frac{3}{16} \\
p_{\text {wrinkled and yellow }}=p_{\text {wrinkled }} \cdot p_{\text {yellow }}=\frac{1}{4} \cdot \frac{3}{4}=\frac{3}{16} \\
p_{\text {wrinkled and green }}=p_{\text {wrinkled }} \cdot p_{\text {green }}=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}
\end{array}
$$

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 1

$R W: Y g$ X $R W: Y g$	$R: Y$	$R: g$	$w: Y$	$w: g$
$R: Y$	$R R: Y Y$	$R R: Y g$	$R W: Y Y$	$R W: Y g$
$R: g$	$R R: g Y$	$R R: g g$	$R W: g Y$	$R w: g g$
$w: Y$	$W R: Y Y$	$W R: Y g$	$W_{w}: Y Y$	$W w: Y g$
$w: g$	$W R: g Y$	$W R: g g$	$W_{w}: g Y$	$W w: g g$

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 1

Test the validity of Mendel's fundamental principles of heredity by assessing the accuracy of the expected proportions of seed shape and seed color combinations produced by the pea plants resulting from this dihybrid cross to the actual frequencies observed by Mendel in his experiment.

[^0]Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 1

H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencies fit the observed frequencies

Use $\alpha=0.05$
X 2 GOF-Test

$$
\text { with } \mathrm{df}=4-1=3
$$

p -value ≈ 0.925
Since the p-value of 0.925 is not 0.05 or less, the decision is to not reject H_{0}.

Example 1

Therefore, all of the expected frequencies (which were generated by using Mendel's fundamental principles of heredity) fit the observed frequencies.

As such, the results of this experiment corroborates the validity of Mendel's fundamental principles of heredity.

Example 2

The manager of a Round Table Pizza parlor kept track of the number of pizzas sold at his restaurant each day for an entire week.

That week, 54 pizzas were sold on Sunday, 67 on Monday, 49 on Tuesday, 52 on Wednesday, 55 on Thursday, 73 on Friday, and 78 on Saturday.

Example 2

If the number of pizzas sold is the same for each day of the week, one would expect that each day of the week would account for $1 / 7$ of the total number of pizzas sold that week.

The Chi-Squared Goodness-of-Fit Test is used to determine if the expected frequencies (according to the idea that the number of pizzas sold is the same for each day of the week) fit the observed frequencies
(the actual number of pizzas sold that week).

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 2

H_{0} : All of the expected frequencies fit
the observed frequencies
H_{1} : Not all of the expected frequencies fit
the observed frequencies
Use $\alpha=0.05$
$\mathrm{X}^{2} \mathrm{GOF}-\mathrm{Test}$
with $\mathrm{df}=7-1=6$
p -value ≈ 0.047
Since the p-value of 0.047 is 0.05 or less, the decision is to reject H_{0}.

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 2

Test the idea that the number of pizzas sold at this Round Table Pizza parlor is the same for each day of the week. Based on this result, what could the manager of this restaurant conclude?

Example 2		$E=n \cdot p_{i}$	
Day of the Week	Observed Frequencies	Expected Frequencies	
Sunday	54	428. $\frac{1}{7}$	
Monday	67	428. $\frac{1}{7}$	
Tuesday	49	428. $\frac{1}{7}$	
Wednesday	52	428	
Thursday	55	$428 \cdot \frac{1}{7}$	Bow
Friday	73	428. $\frac{1}{7}$	0000
Saturday	78	428. $\frac{1}{7}$	-113 ${ }^{3}$
$\mathrm{n}=428$			-
Lesson 42 : The Chi-Squared Ga			

Example 2

Therefore, not all of the expected frequencies fit the observed frequencies.

So, based on this result, the manager of this restaurant could conclude that the idea that the number of pizzas sold at this Round Table Pizza parlor is the same for each day of the week is not valid.

Example 2

The data indicate that this restaurant sold more pizzas than expected on Friday, Saturday, and Monday. Whereas, on Sunday, Tuesday, Wednesday, and Thursday, fewer pizzas were sold than expected.

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 3

Use the Chi-Squared Goodness-of-Fit test and the Sierra College Elementary Statistics Student Survey to determine if it is reasonable to assume that the GPA of Sierra College Elementary Statistics students follows a normal distribution.

Example 3

The standard score for a random variable that follows a normal probability distribution will take on the following values with these corresponding probabilities.

Standard Score	Normal Probability
-4.5 to -1.5	0.0668
-1.5 to -0.5	0.2417
-0.5 to +0.5	0.3829
+0.5 to +1.5	0.2417
+1.5 to +4.5	0.0668

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 3

The Chi-Squared Goodness-of-Fit Test is used to determine if the expected frequencies (generated according to a hypothesis) fit the observed frequencies (determined by the actual sample data values).

The GPAs collected in the Sierra College Elementary Statistics Student Survey will be used to determine the observed frequencies in the

Chi-Squared Goodness-of-Fit Test.

The normal probability distribution will be used to generate the expected frequencies in the Chi-Squared Goodness-of-Fit Test.

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 3

H_{0} : All of the expected frequencies fit the observed frequencies
H_{1} : Not all of the expected frequencies fit the observed frequencies

Use $\alpha=0.05$
$\mathrm{X}^{2} \mathrm{GOF}$-Test
with $\mathrm{df}=5-1=4$
p-value ≈ 0.935
Since the p-value of 0.935 is not 0.05 or less, the decision is to not reject H_{0}.

Lesson 42 : The Chi-Squared Goodness-of-Fit Test

Example 3

Therefore, all of the expected frequencies (which were generated by using the normal probability distribution) fit the observed frequencies.

So, it is reasonable to assume that the GPA of Sierra College Elementary Statistics students follows a normal distribution.

Your solutions should be clear, complete, and sufficiently detailed in order to demonstrate your understanding and communicate your reasoning and method of solving the problem.

Exercise 1

Over the past several semesters, 21.5% of students in Professor Brown's Experimental Psychology (PSYC 105) course earned an "A", 31.2\% earned a "B", 30.1\% earned a "C", 10.7\% earned a "D", and 6.5% earned an " F ". Last semester, Professor Brown covered the same curriculum in this course as in previous semesters, but she required her students to use a different textbook. That semester, 3 of Professor Brown's Experimental Psychology (PSYC 105) students received an "A", 7 received a "B", 5 received a "C", 2 received a "D", and 1 received an "F".

Test the hypothesis that changing the required textbook in this course resulted in no noticeable change in the final grade distribution of students. Based on this result, what can Professor Brown surmise regarding the final grade distribution of her students in this course last semester compared to previous semesters?

Exercise 2

A report published by the United States Census Bureau revealed that 68% of families have two parents present, 23% have only a mother present, 5% have only a father present, and 4% have no parent present. A random sample of 200 families in the Lucas Valley School District resulted in 122 with two parents present, 59 with only a mother present, 7 with only a father present, and 12 with no parent present.

Use a Chi-Squared test and a 0.05 level of significance to determine if the published population percentages accurately reflect the distribution of families in the Lucas Valley School District. Based on this result, how does the distribution of families in the Lucas Valley School District compare to the general population?

Exercise 3

Zentner Industries operates its manufacturing facility six days a week. The personnel department compiled a report detailing the sick leave usage by the company's employees. According to this report, in the past sixteen weeks a total of 29 sick leave days were used by employees on Monday, 17 on Tuesday, 14 on Wednesday, 16 on Thursday, 25 on Friday, and 32 on Saturday.

Use a Chi-Squared test with $\alpha=0.05$ to decide if the total number of sick leave days used by employees of Zentner Industries is equally (or uniformly) distributed over the six days a week its manufacturing facility is in operation. Based on this result, what can the personnel department conclude about employee sick leave usage on Monday through Saturday?

Exercise 4

The standard score for a random variable that follows a normal probability distribution will take on the following values with these corresponding probabilities.

Standard Score	Normal Probability
-4.5 to -1.5	0.0668
-1.5 to -0.5	0.2417
-0.5 to +0.5	0.3829
+0.5 to +1.5	0.2417
+1.5 to +4.5	0.0668

Use the Chi-Squared Goodness-of-Fit test and the Movie Database Sample to determine if it is reasonable to assume that the running time of movies follows a normal distribution.

Your solutions should be clear, complete, and sufficiently detailed in order to demonstrate your understanding and communicate your reasoning and method of solving the problem.

Exercise 1

Over the past several semesters, 21.5\% of students in Professor Brown's Experimental Psychology (PSYC 105) course earned an "A", 31.2% earned a " B ", 30.1% earned a " C ", 10.7% earned a "D", and 6.5% earned an "F". Last semester, Professor Brown covered the same curriculum in this course as in previous semesters, but she required her students to use a different textbook. That semester, 3 of Professor Brown's Experimental Psychology (PSYC 105) students received an "A", 7 received a "B", 5 received a "C", 2 received a "D", and 1 received an " F ".

Test the hypothesis that changing the required textbook in this course resulted in no noticeable change in the final grade distribution of students. Based on this result, what can Professor Brown surmise regarding the final grade distribution of her students in this course last semester compared to previous semesters?

H_{0} : All of the expected frequencies fit the observed frequencies. H_{1} : Not all of the expected frequencies fit the observed frequencies.

Use $\alpha=0.05$
$n=3+7+5+2+1=18$

$$
E_{i}=n \cdot p_{i}
$$

$$
d f=c-1=5-1=4
$$

L1	1214	L3	2
3	3.87	. 215	
7	5.616	\%12	
${ }^{5}$	5.418	301	
1	1.17	. 065	
$\overline{L z}=18+L 3$			

p-value ≈ 0.963
Since the p -value of 0.963 is not 0.05 or less, the decision is to not reject H_{0}. Therefore, all of the expected frequencies fit the observed frequencies. So, based on this result, Professor Brown should surmise that changing the required textbook in this course resulted in no noticeable change in the final grade distribution of her students compared to previous semesters.

Exercise 2

A report published by the United States Census Bureau revealed that 68% of families have two parents present, 23% have only a mother present, 5% have only a father present, and 4% have no parent present. A random sample of 200 families in the Lucas Valley School District resulted in 122 with two parents present, 59 with only a mother present, 7 with only a father present, and 12 with no parent present.

Use a Chi-Squared test and a 0.05 level of significance to determine if the published population percentages accurately reflect the distribution of families in the Lucas Valley School District. Based on this result, how does the distribution of families in the Lucas Valley School District compare to the general population?

H_{0} : All of the expected frequencies fit the observed frequencies.

H_{1} : Not all of the expected frequencies fit the observed frequencies.
Use $\alpha=0.05$

$$
n=122+59+7+12=200
$$

$$
E_{i}=n \cdot p_{i}
$$

L1	\| 8	\|L3	z
122	136	. 6 早	
59	46	. 2	
$\stackrel{7}{12}$	10	. 04	

p -value ≈ 0.046

$$
d f=c-1=4-1=3
$$

イ2GDF-TESt

Since the p-value of 0.046 is 0.05 or less, the decision is to reject H_{0}.
Therefore, not all of the expected frequencies fit the observed frequencies. So, based on this result, the published population percentages do not accurately reflect the distribution of families in the Lucas Valley School District. The data indicate that the Lucas Valley School District has a higher percentage of families with only a mother present and no parent present and a lower percentage of families with two parents present and only a father present compared to the general population.

Exercise 3

Zentner Industries operates its manufacturing facility six days a week. The personnel department compiled a report detailing the sick leave usage by the company's employees. According to this report, in the past sixteen weeks a total of 29 sick leave days were used by employees on Monday, 17 on Tuesday, 14 on Wednesday, 16 on Thursday, 25 on Friday, and 32 on Saturday.

Use a Chi-Squared test with $\alpha=0.05$ to decide if the total number of sick leave days used by employees of Zentner Industries is equally (or uniformly) distributed over the six days a week its manufacturing facility is in operation. Based on this result, what can the personnel department conclude about employee sick leave usage on Monday through Saturday?

H_{0} : All of the expected frequencies fit the observed frequencies.

H_{1} : Not all of the expected frequencies fit the observed frequencies.
Use $\alpha=0.05$

$$
n=29+17+14+16+25+32=133 \quad p_{i}=\frac{1}{6} \quad \begin{aligned}
& \text { when equally } \\
& \text { distributed over } \\
& \text { the six days a week }
\end{aligned}
$$

$$
E_{i}=n \cdot p_{i} \quad d f=c-1=6-1=5
$$

L1	國	L3
29	22.167	16667
17	22.167	. 16667
14	2c. 167	. 1667
15	2 c 167	. 1669
$\frac{25}{3}$	22.167	. 16667
L2 = 13S 3 ¢ L 3		

$$
p \text {-value } \approx 0.026
$$

Since the p-value of 0.026 is 0.05 or less, the decision is to reject H_{0}.
Therefore, not all of the expected frequencies fit the observed frequencies. So, based on this result, the personnel department can conclude that the total number of sick leave days used by employees of Zentner Industries is not equally (or uniformly) distributed over the six days a week its manufacturing facility is in operation. The data indicate that a higher proportion of sick leave days are used on Saturday, Monday, and Friday, where as a lower proportion of sick leave days are used on Tuesday, Wednesday, and Thursday.

Exercise 4

The standard score for a random variable that follows a normal probability distribution will take on the following values with these corresponding probabilities.

Standard Score	Normal Probability
-4.5 to -1.5	0.0668
-1.5 to -0.5	0.2417
-0.5 to +0.5	0.3829
+0.5 to +1.5	0.2417
+1.5 to +4.5	0.0668

Observed Frequency
3
17
25
9
6

Use the Chi-Squared Goodness-of-Fit test and the Movie Database Sample to determine if it is reasonable to assume that the running time of movies follows a normal distribution.
H_{0} : All of the expected frequencies fit the observed frequencies.
H_{1} : Not all of the expected frequencies fit the observed frequencies.
Use $\alpha=0.05$

$$
n=3+17+25+9+6=60
$$

$$
E_{i}=n \cdot p_{i} \quad d f=c-1=5-1=4
$$

p -value ≈ 0.414
Since the p-value of 0.414 is not 0.05 or less, the decision is to not reject H_{0}.
Therefore, all of the expected frequencies fit the observed frequencies. So, based on this result, it is reasonable to assume that the running time of movies follows a normal distribution.

[^0]: The Chi-Squared Goodness-of-Fit Test is used to determine
 if the expected frequencies (generated according to a
 hypothesis) fit the observed frequencies (determined
 by the actual sample data values).

