One-Way Analysis of Variance

is used to determine if the means for more than two populations are all equal

State hypothesis H₀: All of the population means are equal H₁: Not all of the population means are equal

Use α = 0.05 (unless stated otherwise)

Enter the sample from population 1 into L₁ Enter the sample from population 2 into L₂ :

Enter the sample from population m into L_m

 $ANOVA(L_1, L_2, \dots, L_m)$

Decision:

Reject H_0 when p-value $\leq \alpha$

Otherwise do not reject H₀

State conclusion

Linear Regression Analysis

is used to predict one variable based on the linear relationship with another

Enter the predictor data (x_i) into L_1 Enter the predicted data (y_i) into L_2

LinReg(ax+b) L1,L2

The linear regression model that will best predict y based on x is

 $\hat{y} = ax + b$

where a is the slope and b is the y-intercept

It is appropriate to use the linear regression model to make predictions when the coefficient of determination r² is close to 1. When r² is close to 1, the linear regression model fits the sample data very well.

The Chi-Squared Goodness-of-Fit Test

is used to determine if the expected frequencies fit the observed frequencies

State hypothesis

H₀: All of the expected frequencies fit the observed frequencies

H₁: Not all of the expected frequencies fit the observed frequencies

Use α = 0.05 (unless stated otherwise)

Enter the observed frequencies (data) in L_1 Enter the expected frequencies $(n \cdot p_i)$ in L_2

> X²GOF-Test with df = c - 1

Decision:

Reject H_0 when p-value $\leq \alpha$

Otherwise do not reject H₀

State conclusion

The Chi-Squared Test for Independence

is used to determine whether two events are independent of one another

State hypothesis

H₀: The events are independent H₁: The events are not independent

Use $\alpha = 0.05$ (unless stated otherwise)

Enter the observed frequencies (data) into an r×c matrix

 X^2 -Test with df = (c - 1)·(r - 1)

Decision:

Reject H_0 when p-value $\leq \alpha$

Otherwise do not reject H₀

State conclusion