Confidence Interval Estimation				
One Population		Two Population		
Mean	Proportion	Means	Proportions	
Use 1-a = 0.95 (unless stated otherwise) TInterval	Use 1-α = 0.95 (unless stated otherwise) 1-PropZInt	Use 1-α = 0.95 (unless stated otherwise) 2-SampTInt	Use 1-α = 0.95 (unless stated otherwise) 2-PropZInt	
L < µ < U	L < p < U	L < µ1 - µ2 < U	$L < p_1 - p_2 < U$	
The population mean μ is estimated to be between the lower limit L and the upper limit U with $(1-\alpha) \cdot 100\%$ confidence.	The population proportion p is estimated to be between the lower limit L and the upper limit U with $(1-\alpha)\cdot 100\%$ confidence.	The difference in two population means $\mu_1 - \mu_2$ is estimated to be between the lower limit L and the upper limit U with $(1-\alpha).100\%$ confidence.	The difference in two population proportions $p_1 - p_2$ is estimated to be between the lower limit L and the upper limit U with $(1-\alpha).100\%$ confidence.	

Hypothesis Testing Procedure				
One Population		Two Population		
Mean	Proportion	Means	Proportions	
State hypothesis	State hypothesis	State hypothesis	State hypothesis	
H ₀ : $\mu = \text{ or } \ge \text{ or } \le \mu_0$	$H_0: p = or \ge or \le p_0$	H ₀ : $\mu_1 = \text{or} \ge \text{or} \le \mu_2$	H ₀ : $p_1 = or \ge or \le p_2$	
H ₁ : $\mu \ne \text{ or } < \text{ or } > \mu_0$	$H_1: p \ne or < or > p_0$	H ₁ : $\mu_1 \ne \text{or} < \text{or} > \mu_2$	H ₁ : $p_1 \ne or < or > p_2$	
Use $\alpha = 0.05$	Use α = 0.05	Use $\alpha = 0.05$	Use $\alpha = 0.05$	
(unless stated otherwise)	(unless stated otherwise)	(unless stated otherwise)	(unless stated otherwise)	
T-Test	1-PropZTest	2-SampTTest	2-PropZTest	
Decision:	Decision:	Decision:	Decision:	
Reject H_0 when	Reject H_0 when	Reject H_0 when	Reject H₀ when	
p-value $\leq \alpha$	p-value $\leq \alpha$	p-value $\leq \alpha$	p-value ≤ α	
Otherwise	Otherwise	Otherwise	Otherwise	
do not reject H ₀	do not reject H ₀	do not reject H ₀	do not reject H0	
State conclusion	State conclusion	State conclusion	State conclusion	