Relative (Local) Maxima and Minima of Functions of Several Variables

Suppose a firm makes 
[image: image99.png]The point (a. b. f(a. b)) is called a saddle
poin.
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number of deluxe copies of dictionaries and 
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number of standard copies of dictionaries, and the total profit realized from selling 
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number of deluxe copies of dictionaries and 
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number of standard copies of dictionaries is given by  the profit function:     
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How would we find the number of each type of dictionary to produce in order to maximize profit ?    To do this we need to study the relative extrema of a function of two variables.

Informally speaking, a function of two variables, 
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on the surface 
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 is the highest point on the surface when compared to all nearby points.  See the figure below.
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Formal Definition: Let 
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 be a function defined on a region 
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The relative maximum is the number 
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Informally speaking, a function of two variables, 
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 if the point 
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 is the lowest point on the surface when compared to all nearby points.  See the figure below.
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Formal Definition: Let 
[image: image26.wmf]f

 be a function defined on a region 
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The relative minimum is the number 
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Recall that for a single variable function 
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, if the function has a relative (local)  maximum or minimum  at some point 
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 then  
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 is undefined.  See the figure below.
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Similarly, for  multiple variable functions 
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The case where  
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 because at those  points we have horizontal tangent lines.
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The case where 
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is undefined since we have a vertical tangent line  at the point 
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.  Vertical tangent lines, as with all tangent lines, have an undefined slope.  
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Again, if the function has a relative (local)  maximum or minimum at some point 
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.    But the converse is not true, i.e. if  
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, we may not have a relative (local ) extrema, but instead have a saddle point.  See the figure below.

The point 
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 is a saddle point ( a point right in the middle of the saddle.)


Notice that both 
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since we have horizontal tangent lines at that saddle point 
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 has neither a relative maximum nor a relative minimum at 
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 since some nearby points are higher and some nearby points are lower than 
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Critical Point of  f

 A critical point of  f is a point 
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  or at least one of the partial derivatives does not exist.

To determine whether a relative (local) extrema is a relative (local) maximum or relative (local) minimum, use the second derivative test.

The Second Derivative Test to Determine Relative (local) Extrema

(1)  Find the critical points of 
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 by solving the system of simultaneous equations    ( two equations with two unknowns)
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(2) The Second Derivative Test  : Let 
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(d)  
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 implies the test is inconclusive.  Use another test.
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