POLYNOMIAL FUNCTIONS

(1) The degree of a single variable polynomial is the largest exponent of the variable in that polynomial.

(2) The leading coefficient of a single variable polynomial is the coefficient of the term with the largest exponent.   

(3) A linear function is a function of the form 
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The degree of a linear function is one.

(4) A quadratic function is a function of the form 
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.  This is equivalent to 
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The degree of a quadratic function is two.

(5) A polynomial  function is a function of the form 
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, where 
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are real numbers and n is a non negative integer i.e. n =0,1,2,3, …   The degree of a polynomial function is n.

Example A:

	Polynomial Functions
	Non Polynomial Functions
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(square root function)
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(rational function)
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(constant function)
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(cube root function)
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 (zero function)
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In the remaining blanks, list your own examples of polynomial functions and non polynomial functions. 

Polynomial functions have graphs that are continuous (informally, this means the graph has no gaps, no holes, and  can be drawn without lifting your pencil from the paper)  as well as smooth ( the graph has no sharp corners and no cusps)

Example B:

(1) Graph of a polynomial function:
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(2) Graph of a non polynomial function:


One simple polynomial function is a power function of 

the form 
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. (a is a nonzero real number and n is an integer greater than 0 i.e. n = 1,2,3 ….)

Two cases of a power function:

(1) 
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 if n is an even integer ( n = 2,4,6,…), the graph will resemble the parabola 
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 having vertex (0,0).

The parabola points up if a >0. 

The parabola points down  if a <0.

If 
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 i.e. if 
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, the parabola will be more narrow

compared to 
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If 
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, the parabola will be more wide

compared to 
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As n increases, the graph shoots up faster, and flattens out sooner.  Below are the graphs of 
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(solid graph) and 
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(dashed graph) on the same xy-plane.


(2) 
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 if n is an odd integer greater than or equal to 3 

( n = 3,5,7,…), the graph will resemble 
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The graph will be in Quadrant I & Quadrant III  if a >0. 

The graph will be in Quadrant II & Quadrant IV  if a <0. 

As n increases, the graph shoots up faster, and flattens out sooner.  Below are the graphs of 
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(solid graph) and 
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(dashed graph) on the same xy-plane.


Example C: Graph 
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 (Change the scales on the axes and use transformations.)
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Example D: Graph 
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 (Change the scales on the axes and use transformations.)
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THE REAL ZEROS OF A POLYNOMIAL 

If we have the function  
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We call these solutions x = -5, x = 1 and x = -4 the real zeros of f (since these are the values that make f(x) = 0).

(-5,0), (1,0) and (-4,0) are the x-intercepts of f.

(x + 5), (x – 1) and (x + 4) are the factors of f.

Generically, if f is a function and r is any real number, where 

f(r)=0, then r is a real zero of f.

If r is a real zero of f, then:

( x – r) is a factor of f.

(r,0) is an x-intercept of f.

Example E: Find a polynomial of degree 4 whose real zeros are 

3, -4, 6, -2.

Since 3 is a real zero of f, then x – 3 is a factor of f.

Since -4 is a real  zero of f, then x – (-4) = x + 4 is a factor of f.

Since 6 is a real zero of f, then x – 6 is a factor of f.

Since -2 is a real zero of f, then x – (-2) = x + 2 is a factor of f.

Thus, the polynomial is  f(x) = a (x – 3)(x + 4) (x – 6)( x + 2 ).

“a” denotes any nonzero real number.  The value of “a” causes a stretch, compression, or reflection of the graph, but has no impact on the x-intercepts.  

MULTIPLICITY

Definition:  If 
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 is a factor of the polynomial f and 
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  is not a factor of f, then r is called a zero of multiplicity m 

of f.  The factor (x – r) has exponent m and appears m times.

Returning to 
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We say – 5 is a zero of multiplicity 2, since the factor ( x + 5)

has exponent 2.

We say 1 is a zero of multiplicity 3, since the factor (x – 1)

has exponent 3.

We say – 4 is a zero of multiplicity 1, since the factor ( x + 4)

has exponent 1.
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