      FUNCTIONS
 Recall:  A function is a rule f which corresponds (or assigns) to each element in the domain to one and only one element in the range.



Properties (Algebra) of Functions: 

 (Let the Domain of  f = A    and  the Domain of g = B)

(1) Sum 
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(2) Difference 
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 Subtract out the entire g(x).
(3) Product 
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(4) Quotient  
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The domain of a function is all valid values of x for which the function is defined.

The domain of the sum, difference, and product functions is  
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, which denotes the intersection of the sets; that is, the elements shared by both sets.

The domain of the quotient function is 
[image: image7.wmf]AB

Ç

, excluding x values  that cause  g(x) = 0.

Given one function g, we can define g as 
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What is the domain of g in interval notation ? 
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 EMBED Equation.DSMT4 [image: image10.wmf]()
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Composition of functions:  If we are given two functions, f and g, the composite function 
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 (also called the composition of f and g) is defined as
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We can illustrate this concept using an arrow diagram:
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Given a number x in the domain of g, we apply g to this number and find its output (image) , a number g(x).  Assuming this number g(x) is in the domain of  f, we apply f to g(x), and calculate its output f(g(x)).
We can now define a new function h, defined as 
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, composed of the two functions f and g.  This new function is defined as h(x) = f(g(x)),  obtained by substituting g into f.  

The domain of the function 
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 is the set of all real numbers x such that x is in the domain of g, such that g(x) is in the domain of f.   That  is, the domain of the function 
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 is the set of all real numbers x where :
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 g(x) is defined.
AND (INTERSECTION 
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 f(g(x))  is defined.
Informal Definition of a One– to– One Function:

A function is one to one if every x– value (input) corresponds to one y– value (output) and each   y– value (output) corresponds to one x– value (input).    ( Just the way it sounds ! )  

Formal Definition of a One– to– One Function:

A function f is one–  to– one if  any two different inputs in the domain correspond to two different outputs in the range.  That is, if 
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 are two different inputs of a function f then 
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Horizontal-Line Test:

If every horizontal line intersects a graph only once, then the graph represents a one-to one function.

Informal Definition of the Inverse of a One- to -One Function:
For a  function to have an inverse, it must be one-to one.

Given a one-to one function f , containing these ordered pairs:
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The domain of f is {a,c,e}.  *   ( x-values of f )

The range of f is {b,d,f}.   **   ( y-values of f )

The inverse of this one-to-one function is defined as
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     Just switch the coordinates.

The domain  of f  inverse  is {b,d,f}.  **( x-values of f  inverse)

The range of f  inverse is {a,c,e }.* ( y-values of f inverse)

Note: The Domain of f = The Range of f  inverse. *

           The Range of f = The Domain of f  inverse.  **

To Graphically find the inverse of a function, reflect the graph along the line y = x.  This has the effect of switching  the coordinates   x and y.
To Algebraically find the Inverse of a One– to– One Function: 
For a  function to have an inverse, it must be one-to one.
(1) Replace f(x) by y.

(2) Interchange x and y.

(3) Solve for y. 

(4) Replace y by 
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(5) Check your answer by showing 
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 and 
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.  (This step is optional.)



Properties of Inverse functions
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      where  x is in the domain of  
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      where x is in the domain of  
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 If a function is not one–   to –  one, we can find the inverse of such a function by making it one–to–one by restricting the domain of this non one-to-one function.       Consider the function   
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,which is not  one–  to – one.  To make it one–  to – one, let the domain be 
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