- 1. Determine if each of the following transformations *T* are linear transformations:
 - i) Let g be some nonzero continuous function defined over [a,b]. Define $T:C^0[a,b] \to R$ by $T(f) = \int_a^b \frac{f(x)}{g(x)} dx$

ii) Let $T: P_2 \rightarrow P_2$ be defined by $T(a_0 + a_1 x) = a_0 + (a_1 + 1)x$

- 2. Define $T: P_3 \to P_3$ by $T(a_0 + a_1x + a_2x^2) = (a_0 + a_2) + (2a_2 a_0)x^2$. Determine each of the following:
 - i) Ker(T)
- ii) dim(Rng(T))
- iii) Rng(T)

3. Let $T: P_3 \to C^0[a,b]$ be defined by T(f) = f''. Determine Ker(T). Is T onto?

4. Let \bar{u} be a fixed vector in \mathbb{R}^3 . If $\mathcal{T}: \mathbb{R}^3 \to \mathbb{R}$ is defined by $T(\bar{v}) = \langle \bar{u}, \bar{v} \rangle$. Describe in words what Ker(T) represents.