1. Determine if each of the following transformations T are linear transformations:
i) Let g be some nonzero continuous function defined over $[a, b]$. Define $T: C^{0}[a, b] \rightarrow R$ by $T(f)=\int_{a}^{b} \frac{f(x)}{g(x)} d x$
ii) Let $T: P_{2} \rightarrow P_{2}$ be defined by $T\left(a_{0}+a_{1} x\right)=a_{0}+\left(a_{1}+1\right) x$
2. Define $T: P_{3} \rightarrow P_{3}$ by $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\left(a_{0}+a_{2}\right)+\left(2 a_{2}-a_{0}\right) x^{2}$. Determine each of the following:
i) $\operatorname{Ker}(T)$
ii) $\quad \operatorname{dim}(\operatorname{Rng}(T))$
iii) $\operatorname{Rng}(T)$
3. Let $T: P_{3} \rightarrow C^{0}[a, b]$ be defined by $T(f)=f^{\prime \prime}$. Determine $\operatorname{Ker}(T)$. Is T onto?
4. Let \bar{u} be a fixed vector in \mathbb{R}^{3}. If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by $T(\bar{v})=\langle\bar{u}, \bar{v}\rangle$. Describe in words what $\operatorname{Ker}(T)$ represents.
