Math 33

- I. Mechanical Systems with Free Oscillation with spring constant and frictional coefficient:
 - 1. k = 4 g/s², m = 1 g where the object is initially pulled down 2 cm and with a downward initial velocity of 2 m/s
 - 2. k = 5 g/s², m = 1 g, c = 4 g/s where the object is initially pulled down 2 cm and with a downward initial velocity of 2 m/s
- II. Mechanical Systems with Forced Oscillations:
 - 1. $k = 25 \text{ g/s}^2$, m = 1 g, c = 0 g/s where the object is initially pulled down 0 cm and with a downward initial velocity of 10 m/s. Consider an external force of $10 \sin 4t$
 - 2. Consider a system in which our mathematical model is:
 - i) $y(t) = t \sin t + C_1 \cos \omega t + C_2 \sin \omega t$

ii)
$$y(t) = e^{-at} (C_1 \cos bt + C_2 \sin bt) + A\cos(\omega t - \phi)$$

- III. RLC Circuits:
 - 1. $R = 20 \Omega, L = 1$ henry, C = 0.005 farads. The voltage is shorted our at t = 0 and there is initially a charge of 10 coulombs on the capacitor and no current. How many seconds will it take for the amplitude to be reduced by 99%?

2.
$$R = 1 \Omega, L = \frac{1}{2}$$
 henry, $C = \frac{2}{3}$ farads. The voltage is given by $E(t) = \cos t$.

IV. Examples of Higher Order Differential Equations with Non-Constant Coefficients:

1.
$$x^2 \frac{d^2 y}{dx^2} + \frac{7}{2} x \frac{dy}{dx} - \frac{3}{2} y = 0$$
 with $x > 0$

2. $x^2 \frac{d^2 y}{dx^2} + \frac{5}{3} x \frac{dy}{dx} + \frac{5}{9} y = 0$ with x > 0

3.
$$x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} = x^{-1}$$
 with $x > 0$

4.
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = x^3 \ln x \text{ with } x > 0$$