addition operation defined on <i>V</i> and scalar multiplication operation defined with scalars from a set <i>F</i> . <i>V</i> is called a <i>vector space over F</i> provided each of the following conditions are satisfied:	
A1.	<u>Closure under +</u> : if $\overline{u}, \overline{v} \in V$, then $\overline{u} + \overline{v} \in V$
A2.	<u>Closure under scalar multiplication</u> : if $u \in V$ and $k \in F$, then $ku \in V$
A3.	<u>Commutativity for +</u> : $\overline{u} + \overline{v} = \overline{v} + \overline{u} \forall \overline{u}, \overline{v} \in V$
A4.	<u>Associativity for +</u> : $(\overline{u} + \overline{v}) + \overline{w} = \overline{u} + (\overline{v} + \overline{w}) \forall \overline{u}, \overline{v}, \overline{w} \in V$
A5.	Existence of a zero vector in V : $\exists \overline{0} \in V \text{ such that } \overline{u} + \overline{0} = \overline{u} \forall \overline{u} \in V$
A6.	Existence of an additive inverse vector in V:
	$\forall \overline{u} \in V, \exists (-\overline{u}) \in V \text{ such that } \overline{u} + (-\overline{u}) = \overline{0}$
	We refer to the vector $-\overline{u}$ as the <i>additive inverse</i> of the vector \overline{u}
A7.	<u>Unit property</u> : $\forall u \in V, 1 \cdot u = u$
A8.	<u>Associativity of scalar multiplication</u> : $\forall u \in V \text{ and } \forall r, s \in F, (rs)u = r(su)$
A9.	Distributive property for scalar multiplication over vector addition:
	$\forall u, v \text{ and } \forall r \in F, r(u+v) = ru+rv$
A10.	Distributive property for scalar multiplication over scalar addition:
	$\forall \overline{u} \text{ and } \forall r, s \in F, \ (r+s)\overline{u} = r\overline{u} + s\overline{u}$

Vector Spaces

Let V be a non-empty set (we often call the elements of this set vectors) with an

<u>Spring, 2018</u>

<u>Math 33</u>

<u>Def</u>: