Def: Let V be a non-empty set (we often call the elements of this set vectors) with an addition operation defined on V and scalar multiplication operation defined with scalars from a set F. V is called a vector space over F provided each of the following conditions are satisfied:

A1. Closure under \pm : if $\bar{u}, \bar{v} \in V$, then $\bar{u}+\bar{v} \in V$
A2. Closure under scalar multiplication: if $\bar{u} \in V$ and $k \in F$, then $k \bar{u} \in V$
A3. Commutativity for $+: \quad \bar{u}+\bar{v}=\bar{v}+\bar{u} \quad \forall \bar{u}, \bar{v} \in V$
A4. Associativity for $+: \quad(\bar{u}+\bar{v})+\bar{w}=\bar{u}+(\bar{v}+\bar{w}) \quad \forall \bar{u}, \bar{v}, \bar{w} \in V$
A5. Existence of a zero vector in V: $\quad \exists \overline{0} \in V$ such that $\bar{u}+\overline{0}=\bar{u} \quad \forall \bar{u} \in V$
A6. Existence of an additive inverse vector in V:

$$
\forall \bar{u} \in V, \quad \exists(-\bar{u}) \in V \text { such that } \bar{u}+(-\bar{u})=\overline{0}
$$

We refer to the vector $-\bar{u}$ as the additive inverse of the vector \bar{u}
A7. Unit property: $\forall \bar{u} \in V, 1 \cdot \bar{u}=\bar{u}$
A8. Associativity of scalar multiplication: $\quad \forall \bar{u} \in V$ and $\forall r, s \in F, \quad(r s) \bar{u}=r(s \bar{u})$
A9. Distributive property for scalar multiplication over vector addition:

$$
\forall \bar{u}, \bar{v} \text { and } \forall r \in F, \quad r(\bar{u}+\bar{v})=r \bar{u}+r \bar{v}
$$

A10. Distributive property for scalar multiplication over scalar addition:

$$
\forall \bar{u} \text { and } \forall r, s \in F, \quad(r+s) \bar{u}=r \bar{u}+s \bar{u}
$$

