We will be solving systems of linear equations using a variety of techniques. To reduce the amount of writing in class, IU have provided worked out solutions to the exercises I will be completing in class. In this way, you can allow me (this time) to focus on the arithmetic while you focus on the process.

Consider the following system:

$$
\begin{aligned}
2 x-2 y-4 z & =-6 \\
2 x+y-z & =-3 \\
x+y+2 z & =5
\end{aligned}
$$

I. The Elimination (or Math D) Method:

We will use the first two equations to eliminate the variable $x$ and arrive at a single equation in only $y$ and $z$. Multiplying the second equation by -1 and adding, we have:

$$
\begin{align*}
2 x-2 y-4 z & =-6 \\
-2 x-y+z & =3  \tag{1}\\
\hline-3 y-3 z & =-3
\end{align*}
$$

We will now use the last two equations to eliminate the variable $x$ and arrive at a second equation in only $y$ and $z$. Multiplying the second equation by -2 and adding, we have:

$$
\begin{align*}
2 x+y-z & =-3 \\
-2 x-2 y-4 z & =-10 \\
\hline-y-5 z & =-13 \tag{2}
\end{align*}
$$

Using the equations (1) and (2), we will now consider an easier system of two equations in two unknowns:

$$
\begin{aligned}
-3 y-3 z & =-3 \\
-y-5 z & =-13
\end{aligned}
$$

Multiplying both sides of the first equation by $-\frac{1}{3}$, then adding, we can eliminate the variable $y$ from the system and arrive at an equation solely in $z$ :

$$
\begin{align*}
y+z & =1 \\
-y-5 z & =-13 \\
\hline-4 z & =-12 \\
z & =3 \tag{3.1}
\end{align*}
$$

We will now find the value for the variable $y$ by using our value for $z$ and substituting back into equation (2):

$$
\begin{align*}
-y-5 \cdot 3 & =-13 \\
-y-15 & =-13 \\
-y & =2 \\
y & =-2 \tag{3.2}
\end{align*}
$$

Finally, we will now use our determined values for both $y$ and $z$, substitute them into one of the original three equations (we will use the third, for simplicity), and determine the value for the one remaining variable $x$ :

$$
\begin{align*}
x+(-2)+2 \cdot 3 & =5 \\
x+4 & =5 \\
x & =1 \tag{3.3}
\end{align*}
$$

From the equations (3.1), (3.2), and (3.3), we now have the ordered triple solution: $(1,-2,3)$
II. Gauss-Jordan Elimination on an Augmented Matrix:

Rewriting our original system as an augmented matrix, we will apply a sequence of elementary row operations to rewrite that augmented matrix in reduced rowechelon form:

$$
\begin{array}{r}
{\left[\begin{array}{ccc|c}
2 & -2 & -4 & -6 \\
2 & 1 & -1 & -3 \\
1 & 1 & 2 & 5
\end{array}\right]} \\
\frac{1}{2} R_{1} \rightarrow R_{1}\left[\begin{array}{ccc|c}
1 & -1 & -2 & -3 \\
2 & 1 & -1 & -3 \\
1 & 1 & 2 & 5
\end{array}\right] \\
-2 R_{1}+R_{2} \rightarrow R_{2}\left[\begin{array}{ccc|c}
1 & -1 & -2 & -3 \\
-R_{1}+R_{3} \rightarrow R_{3} & 3 & 3 & 3 \\
0 & 2 & 4 & 8
\end{array}\right] \\
\frac{1}{3} R_{2} \rightarrow R_{2}\left[\begin{array}{ccc|c}
1 & -1 & -2 & -3 \\
0 & 1 & 1 & 1 \\
0 & 2 & 4 & 8
\end{array}\right] \\
R_{2}+R_{1} \rightarrow R_{1} \\
-2 R_{2}+R_{3} \rightarrow R_{3}\left[\begin{array}{ccc|c}
1 & 0 & -1 & -2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 6
\end{array}\right]
\end{array}
$$

$$
\begin{array}{r}
\frac{1}{2} R_{3} \rightarrow R_{3}\left[\begin{array}{ccc|c}
1 & 0 & -1 & -2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 3
\end{array}\right] \\
R_{3}+R_{1} \rightarrow R_{1}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
-R_{3}+R_{2} \rightarrow R_{2} & 1 & 0 & -2 \\
0 & 0 & 1 & 3
\end{array}\right]
\end{array}
$$

translating back from augmented matrix form to equation form, this gives us an equivalent system of three equations in the same three unknowns, specifically:

$$
\begin{aligned}
& x=1 \\
& y=-2 \\
& z=3
\end{aligned}
$$

Again, we have a solution that is the ordered triple $(1,-2,3)$
Now let us consider two additional techniques for solving a system of three equations in three unknowns:

## III. Using a Single Matrix Equation:

We can rewrite the original system of three equations in three unknowns as a single matrix equation where $A$ represents the matrix of coefficients of our three variables $x, y$, and $z$. The matrix $\bar{x}$, will be a $3 \times 1$ matrix (or equivalently a column vector) consisting of these three variables and $\bar{b}$ will be a $3 \times 1$ matrix containing the constants that reside on the right-hand sides of the equations in the original system.

So our system can be generically rewritten in the form:

$$
A \bar{x}=\bar{b}
$$

Of course, our solution to this equation is:

$$
\bar{x}=A^{-1} \bar{b}
$$

With our system, we can rewrite as a single matrix equation:

$$
\left[\begin{array}{ccc}
2 & -2 & -4 \\
2 & 1 & -1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-6 \\
-3 \\
5
\end{array}\right]
$$

whose solution is:

$$
\left[\begin{array}{l}
x  \tag{*}\\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
2 & -2 & -4 \\
2 & 1 & -1 \\
1 & 1 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
-6 \\
-3 \\
5
\end{array}\right]
$$

Unfortunately, we cannot multiply on the right-hand side of this equation without first taking a break and finding $A^{-1}$.

Aside:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
2 & -2 & -4 & 1 & 0 & 0 \\
2 & 1 & -1 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 & 0 & 1
\end{array}\right]} \\
& R_{1} \leftrightarrow R_{3}\left[\begin{array}{ccc|ccc}
1 & 1 & 2 & 0 & 0 & 1 \\
2 & 1 & -1 & 0 & 1 & 0 \\
2 & -2 & -4 & 1 & 0 & 0
\end{array}\right] \\
& -2 R_{1}+R_{2} \rightarrow R_{2}\left[\begin{array} { c c c | c c c } 
{ 1 } & { 1 } & { 2 } & { 0 } & { 0 } & { 1 } \\
{ - 2 R _ { 1 } + R _ { 3 } \rightarrow R _ { 3 } }
\end{array} \left[\begin{array}{cccc} 
& -1 & -5 & 0 \\
1 & -2 \\
0 & -4 & -8 & 1
\end{array} 0\right.\right. \\
& -R_{2} \rightarrow R_{2}\left[\begin{array}{ccc|ccc}
1 & 1 & 2 & 0 & 0 & 1 \\
0 & 1 & 5 & 0 & -1 & 2 \\
0 & -4 & -8 & 1 & 0 & -2
\end{array}\right] \\
& \begin{array}{l}
-R_{2}+R_{1} \rightarrow R_{1} \\
4 R_{2}+R_{3} \rightarrow R_{3}
\end{array}\left[\begin{array}{ccc|ccc}
1 & 0 & -3 & 0 & 1 & -1 \\
0 & 1 & 5 & 0 & -1 & 2 \\
0 & 0 & 12 & 1 & -4 & 6
\end{array}\right] \\
& \frac{1}{12} R_{3} \rightarrow R_{3}\left[\begin{array}{ccc|ccc}
1 & 0 & -3 & 0 & 1 & -1 \\
0 & 1 & 5 & 0 & -1 & 2 \\
0 & 0 & 1 & 1 / 12 & -1 / 3 & 1 / 2
\end{array}\right] \\
& \begin{array}{c}
3 R_{3}+R_{1} \rightarrow R_{1} \\
-5 R_{3}+R_{2} \rightarrow R_{2}
\end{array}\left[\begin{array}{lll|ccc}
1 & 0 & 0 & 1 / 4 & 0 & 1 / 2 \\
0 & 1 & 0 & -5 / 12 & 2 / 3 & -1 / 2 \\
0 & 0 & 1 & 1 / 12 & -1 / 3 & 1 / 2
\end{array}\right]
\end{aligned}
$$

Now that we have found that $A^{-1}=\left[\begin{array}{ccc}1 / 4 & 0 & 1 / 2 \\ -5 / 12 & 2 / 3 & -1 / 2 \\ 1 / 12 & -1 / 3 & 1 / 2\end{array}\right]$, we can multiply on the right-hand side of the equation (*):

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
2 & -2 & -4 \\
2 & 1 & -1 \\
1 & 1 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
-6 \\
-3 \\
5
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
1 / 4 & 0 & 1 / 2 \\
-5 / 12 & 2 / 3 & -1 / 2 \\
1 / 12 & -1 / 3 & 1 / 2
\end{array}\right]\left[\begin{array}{c}
-6 \\
-3 \\
5
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{4} \cdot(-6)+0 \cdot(-3)+\frac{1}{2} \cdot 5 \\
-\frac{5}{12} \cdot(-6)+\frac{2}{3} \cdot(-3)-\frac{1}{2} \cdot 5 \\
\frac{1}{12}(-6)-\frac{1}{3} \cdot(-3)+\frac{1}{2} \cdot 5
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]}
\end{aligned}
$$

Yet again, we have a solution that is the ordered triple $(1,-2,3)$
For our final attempt at solving this system of three equations in three unknowns, we will employ what is referred to as Cramer's Rule, which employs the use of determinants:

## IV. Cramer's Rule:

Let us first compute $D$, the determinant of the coefficient matrix for the system of equations:

$$
\begin{aligned}
D=\left|\begin{array}{ccc}
2 & -2 & -4 \\
2 & 1 & -1 \\
1 & 1 & 2
\end{array}\right| & =2 \cdot\left|\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right|-(-2) \cdot\left|\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right|+(-4) \cdot\left|\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right| \\
& =2 \cdot 3-(-2) \cdot 5+(-4) \cdot 1 \\
& =6+10-4 \\
& =12
\end{aligned}
$$

Replacing the first column (the column consisting of the coefficients for the variable $x$ in each of our three equations) of the determinant $D$ with the constants on the right-hand side of the equal signs in each of the original equations of our system, we can compute $D_{x}$ :

$$
\begin{aligned}
D_{x}=\left|\begin{array}{ccc}
-6 & -2 & -4 \\
-3 & 1 & -1 \\
5 & 1 & 2
\end{array}\right| & =-6 \cdot\left|\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right|-(-2) \cdot\left|\begin{array}{cc}
-3 & -1 \\
5 & 2
\end{array}\right|+(-4) \cdot\left|\begin{array}{cc}
-3 & 1 \\
5 & 1
\end{array}\right| \\
& =-6 \cdot 3-(-2) \cdot(-1)+(-4) \cdot(-8) \\
& =-18-2+32 \\
& =12
\end{aligned}
$$

Repeating this process on the second and third columns, we arrive at:

$$
\begin{aligned}
D_{y}=\left|\begin{array}{ccc}
2 & -6 & -4 \\
2 & -3 & -1 \\
1 & 5 & 2
\end{array}\right| & =2 \cdot\left|\begin{array}{cc}
-3 & -1 \\
5 & 2
\end{array}\right|-(-6) \cdot\left|\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right|+(-4) \cdot\left|\begin{array}{cc}
2 & -3 \\
1 & 5
\end{array}\right| \\
& =2 \cdot(-1)-(-6) \cdot 5+(-4) \cdot 13 \\
& =-2+30-52 \\
& =-24
\end{aligned}
$$

and

$$
\begin{aligned}
D_{z}=\left|\begin{array}{ccc}
2 & -2 & -6 \\
2 & 1 & -3 \\
1 & 1 & 5
\end{array}\right| & =2 \cdot\left|\begin{array}{cc}
1 & -3 \\
1 & 5
\end{array}\right|-(-2) \cdot\left|\begin{array}{cc}
2 & -3 \\
1 & 5
\end{array}\right|+(-6) \cdot\left|\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right| \\
& =2 \cdot 8-(-2) \cdot 13+(-6) \cdot 1 \\
& =16+26-6 \\
& =36
\end{aligned}
$$

Finally, we have that $x=\frac{D_{x}}{D}=\frac{12}{12}=1$,

$$
\begin{aligned}
& y=\frac{D_{y}}{D}=\frac{-24}{12}=-2, \text { and } \\
& z=\frac{D_{z}}{D}=\frac{36}{12}=3
\end{aligned}
$$

And one last time, we arrive at the solution that is the ordered triple $(1,-2,3)$

