Provide both a clear and organized presentation. Show all of your work, completely
simplify your answers, and use exact values only. No technology, other than a scientific calculator, can be used to complete this exam.

1. (25 pts) Solve the differential equation: $y^{3}\left(x^{3}+8\right) \frac{d y}{d x}=\left(x^{4}-8\right)\left(y^{2}+2\right)^{3 / 2}$

This is indeed separable: $\int \frac{y^{3}}{\left(y^{2}+2\right)^{3 / 2}} d y=\int \frac{x^{4}-8}{x^{3}+8} d x$
We will commit to a trig sub on the left and long division (add zero) and pfd on the right:

Let $y=\sqrt{2} \tan \theta$

$$
d y=\sqrt{2} \sec \theta d \theta
$$

$$
\sqrt{2} \int \frac{\sin ^{3} \theta}{\cos ^{2} \theta} d \theta=\int \frac{x^{4}+8 x-8 x-8}{x^{3}+8} d x
$$

$$
\sqrt{2} \int \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta} \sin \theta d \theta=\int\left(x+\frac{\frac{2}{3}}{x+2}+\frac{-\frac{2}{3} x-\frac{16}{3}}{x^{2}-2 x+4}\right) d x
$$

$$
\sqrt{2} \int\left(1-\frac{1}{u^{2}}\right) d u=\frac{1}{2} x^{2}+\frac{2}{3} \ln |x+2|+\int\left(\frac{-\frac{2}{3} x+\frac{2}{3}}{x^{2}-2 x+4}+\frac{-\frac{18}{3}}{(x-1)^{2}+3}\right) d x
$$

$$
\frac{y^{2}+4}{\sqrt{y^{2}+2}}=\frac{1}{2} x^{2}+\frac{1}{3} \ln \frac{x^{2}+4 x+4}{x^{2}-2 x+4}-2 \sqrt{3} \tan ^{-1} \frac{x-1}{\sqrt{3}}+C
$$

2. (10 pts) Use isoclines to draw a slope field for the differential equation $y^{\prime}=\frac{y-2}{x}$. Draw and clearly label in your slope field any equilibrium solutions. In addition, draw a couple of additional solutions. What does the existenceuniqueness theorem say about a solution passing through the origin? What does it say about a solution passing through any point other than the origin?
3. (10 pts) Determine the family of orthogonal trajectories to the family of curves described by the following: $y=k \cos x$

$$
\begin{aligned}
\frac{d y}{d x} & =-k \sin x \\
\frac{d y}{d x} & =\frac{1}{k \sin x} \text { where } k=\frac{y}{\cos x} \\
\frac{d y}{d x} & =\frac{\cos x}{y \sin x} \\
& \int y d y=\int \cot x d x \\
y^{2} & =\ln \sin ^{2} x+C_{1}
\end{aligned}
$$

4. (15 pts) Solve the differential equation $1+\left(y^{\prime}\right)^{2}+y \cdot y^{\prime \prime}=0$

Let $u=y^{\prime}$
and $u \cdot u^{\prime}=y^{\prime \prime}$ giving us:
$1+u^{2}+y \cdot u \cdot u^{\prime}=0$ which is clearly a Bernouilli D.E.
Letting $v=u^{2}$ yields $\frac{1}{2} \frac{d v}{d y}+\frac{1}{y} \cdot v=-\frac{1}{y}$
Consequently, $u= \pm \sqrt{C_{1} y^{-2}-1}$

$$
\int \frac{1}{ \pm \sqrt{C_{1} y^{-2}-1}} d y=\int d x
$$

Finally, we have that $\left(x \pm C_{2}\right)^{2}+y^{2}=C_{1}$
5. (15 pts) Solve the following differential equation:

$$
\ln \left(y+\sqrt{y^{2}+x^{2}}\right)-\ln x=\frac{x}{x y^{\prime}-y} \quad \text { where } x>0, y>0
$$

Note that $\ln \left(\frac{y}{x}+\sqrt{\frac{y^{2}}{x^{2}}+1}\right)=\frac{1}{y^{\prime}-\frac{y}{x}}$ and let $u=\frac{y}{x}$
$\int \ln \left(u+\sqrt{u^{2}+1}\right) d u=\int \frac{1}{x} d x$ and after a bit of integration by parts activity,
$\frac{y}{x} \ln \left(\frac{y}{x}+\sqrt{\frac{y^{2}}{x^{2}}+1}\right)-\sqrt{\frac{y^{2}}{x^{2}}+1}=\ln x+C$, or more simply,
$y \ln \left(y+\sqrt{y^{2}+x^{2}}\right)-(x+y) \ln x-x \sqrt{y^{2}+x^{2}}=C \cdot x$
6. (15 pts) Solve the differential equation $\frac{d y}{d x}=x y+\frac{x^{3}}{y}$

Clearly a Bernouilli D.E., we will commit to $u=y^{2}$

$$
\begin{aligned}
& \frac{d u}{d x}-2 x u=2 x^{3} \text { with } /(x)=e^{-x^{2}} \\
& u e^{-x^{2}}=\int 2 x^{3} e^{-x^{2}} d x \\
& y^{2}=C e^{x^{2}}-x^{2}-1
\end{aligned}
$$

7. (10 pts) A farmer's rice field is supplied by two sources of water. For a duration of time, runoff from other nearby irrigated fields supplies this rice field with 100 gallons $/ \mathrm{hr}$, but is polluted with $10 \mathrm{~g} / \mathrm{gallon}$ of assorted pollutants. Another source is constant rain that supplies his field with 50 gallons/hr, but is clean. Water from his field is released at 100 gallons/hr. His field has the capacity to hold 100,000 gallons of water, but is only half full. If his field is initially pollutant-free, then determine a function that gives us the amount of pollutant in this field during the time that the field is filling (i.e., before it reaches its capacity).

$$
\begin{aligned}
& \frac{d A}{d t}=1000-\frac{100 A}{50,000+50 t} \\
& \frac{d A}{d t}+\frac{2 A}{1000+t}=1000 \text { with an integrating factor } /(t)=(1000+2)^{2} \\
& A(t)=\frac{1000}{3}(1000+t)+\frac{C}{(1000+t)^{2}} \text { where } C=-\frac{1000^{4}}{3} \\
& A(t)=\frac{1000}{3}(1000+t)-\frac{1}{3} \cdot \frac{1000^{4}}{(1000+t)^{2}}
\end{aligned}
$$

