Provide a clear and organized presentation.

1. Let n be an even natural number and A an $n \times n$ matrix. Prove that if the matrix B is obtained by multiplying every column of the matrix A whose position is even by the scalar k, then $\operatorname{det}(B)=k^{\frac{n}{2}} \operatorname{det}(A)$.
2. Use mathematical induction to prove that: $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}=\left[\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right] \quad \forall n \in \mathbb{N}$ where f_{n} is the $\mathrm{n}^{\text {th }}$ Fibonacci number (Define $t_{0}=0$).
