Provide a clear and organized presentation and justify your answers. Consider the linear transformation $T: M_{3}(\mathbb{R}) \rightarrow P_{5}$ defined by:
$T\left(\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]\right)=\left(a_{11}+a_{12}-a_{13}\right)+\left(a_{21}-a_{22}+a_{23}\right) x+a_{33} x^{2}+\left(a_{32}-a_{31}\right) x^{3}$

1. Determine $\operatorname{Ker}(T)$
2. Is T 1-1?
3. Determine $R n g(T)$
4. Is T onto?
