1. Verify that Stokes' Thm is satisfied if $\bar{F}=\left\langle y, x z, x^{2}\right\rangle$ and S is the triangle cut by $x+y+z=1$ in the first octant.
2. Use Stokes' Thm to evaluate $\iint_{S}(\nabla \times \bar{F}) \cdot \bar{n} d S$ if $\bar{F}=\left\langle y,-x, x^{3} y^{2} z\right\rangle$ and S is the surface described by $x^{2}+y^{2}+z^{2}=1$ and $z \leq 0$
3. Use Stokes' Thm to evaluate $\oint_{c} \bar{F} \cdot d \bar{r}$ if $\bar{F}=\langle z, x, 2 x z+2 y z\rangle$ and S is the surface described by $z=1-x^{2}-y^{2}$ where $z \geq 0$
4. Use the Divergence Thm to evaluate $\iint_{S} \bar{F} \cdot \bar{n} d S$ if
$\bar{F}=\left\langle x^{2}+\cosh \left(y z^{3}\right), y-\tan ^{-1} \frac{z}{(x-5)^{2}}, z^{2}+\ln \left(2 x+\sqrt{1+3 y^{3}}\right)\right\rangle$ and S is the surface determined by the portion of $x^{2}+y^{2}=4$ bounded above by $y+z=2$, and bounded below by $z=0$
5. Verify the Divergence Thm with $\bar{F}=\langle x, y, z\rangle$ and S is the surface described by $x^{2}+y^{2}+z^{2}=a^{2}$
