Consider the graph of $y=f(x)$ where $f(x)=\cosh x$ and the graph of $y=g(x)$ where $g(x)=a x^{2}+b x+c$, each over the interval $[-\ln 2, \ln 2]$. We wish to find constants a, b, and c such that both f and g agree at the endpoints of this interval and the arc length for f over this interval is numerically the same as the area under the graph of g over this interval. Note that since the graph of $y=f(x)$ is symmetric with respect to the y-axis, then the graph of $y=g(x)$ will be symmetric with respect to the y-axis as well. So, for free (since we are all Math D experts), we know that $b=0$. If you have a graphing calculator, sketch the graphs of both $y=f(x)$ and $y=g(x)$ on the same coordinate axis system after you have found the values for these constants. In arriving at these values, find the exact values prior to approximating.

