Provide both a clear and organized presentation. Completely answer each question, give exact values only, and show all of your work. Only a scientific calculator can be used on this exam. Each question is worth 20 points, but there are 6 questions.
Choose 5 of these questions to be graded by crossing out one of them. You must cross out which question you would like me to disregard. Otherwise, I will choose the question whose answer is worth the greatest to not grade. Do not use any table of integral reduction formulas.

1. $\int \frac{2 x+4}{6 x^{3}+x^{2}+2 x-1} d x=\frac{1}{2} \ln \frac{9 x^{2}-6 x+1}{2 x^{2}+x+1}-\frac{1}{\sqrt{7}} \tan ^{-1} \frac{4 x+1}{\sqrt{7}}+C$
2. $\int \frac{x}{x+2 \sqrt{x-3}} d x=x-4 \sqrt{x-3}+4 \ln (x+2 \sqrt{x-3})+2 \sqrt{2} \tan ^{-1} \frac{\sqrt{x-3}+1}{\sqrt{2}}+C$
3. $\int \frac{1}{x+2 \sqrt{x^{2}-3}} d x=\frac{1}{2} \ln \left|\frac{\sqrt{x^{2}-3}}{x}+1\right|-\frac{1}{6} \ln \left|\frac{\sqrt{x^{2}-3}}{x}-1\right|+\frac{1}{3} \ln \left|\frac{2 \sqrt{x^{2}-3}}{x}+1\right|+C$
4. $\int \frac{2 \sin x}{\cos x-4 \sin x} d x=-\frac{2}{17} \ln \left(t^{2}+1\right)+\frac{16}{17} \tan ^{-1} t+\frac{2}{17} \ln \left|t^{2}+8 t-1\right|+C$

$$
\text { where } t=\tan \frac{x}{2}
$$

5. $\int \sin ^{2} x \cos ^{4} x d x=\frac{1}{192}\left(12 x-3 \sin 4 x+8 \sin ^{3} 2 x\right)+C$
6. Prove that $\int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x$ if $n \geq 3$ as a natural number

$$
\begin{aligned}
\int \tan ^{n} x d x & =\int \tan ^{n-2} x \tan ^{2} x d x \\
& =\int \tan ^{n-2} x\left(\sec ^{2} x-1\right) d x \\
& =\int \tan ^{n-2} x \sec ^{2} x d x-\int \tan ^{n-2} x d x \\
& =\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x
\end{aligned}
$$

