Math 31	Final Exam	<u>May 22, 2014</u>
Give exact values only and do not use a calculator for any part of this exam, unless		
otherwise specified.	Completely simplify your answers, be clea	r and organized, and

show all of your work. Nowhere on this exam shall we employ the Growth Rate Theorem.

1. (12 pts) Determine the area bounded by the graphs of the equations:

$$y = \tanh x$$
, $y = 1$, and $x = 0$

- 2. (24 pts) Solve the differential equation $(2x^3 x^2 + x 6)\frac{dy}{dx} = \sec^4 y$
- 3. (12 pts) Let $f(x) = 1 + \sin x$ where $x \in \left[0, \frac{\pi}{2}\right]$. Determine the volume of the solid

of revolution obtained by revolving the region bounded by the following equations about the line $x = \pi$:

$$y = f(x), y = \frac{4}{3}$$
, and $x = 0$

4. (12 pts) The outer boundary of the upper portion of the tank pictured below is that of a parabola whose focus is ¼ m from the vertex. If the tank is full of water and there is a spout (not pictured) that is 3 m above the tank, then determine how much work is required to pump the water out of the tank. We need only set up the integral: we need not evaluate the integral.

5. (10 pts) There is a wall at a local aquarium that has dimensions 80 m by 50 m, but has a viewing trapezoidal window at the bottom as indicated in the following picture. How much force is exerted on this viewing window due to hydrostatic pressure? Assume symmetry with respect to a vertical line of symmetry and assume the tank is full of water.

80 m