Math 31 Final Exam May 21, 2014

Show all of your work, be clear and organized, and nowhere on this exam shall we
employ the Growth Rate Theorem.

1. Determine the first four terms of the Taylor Series for f (x) = $ centered about
XxX=4.
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Using what we know about an infinite geometric series, determine a power series
representation for f(x) = In(2+x2) both in expanded form and using our

summation notation.
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3. Determine the radius of convergence for the following power series:
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According to the Ratio Test, we have convergence for the values on x satisfying:

i 3" (n+4)(2(n +1)!)‘ n2"
N0 (n+1)2(n+1) 3" (n+3)(2n!)
- 3"'(n+4)(2n+2)(2n+1)(2n)!  n*
N (n +1)2 3"(n+3)(2n!) (n+1)
(n+4)(2n+2)(2n +1) i

x-2<1

—x-2|<1

2n
lim 3 lim ] (—j x-2|<1
oo (n+1) (n+3) noein+1
3-4';2”-|x—2|<1
Iim(l+1j
n—ow n
12- = ~-|x-2|<1
(Iim(1+1j]
n—oo n
= x-2<1
2
|x—2|<e—
12

So, the radius of convergence is o



Determine whether the series converges or diverges and check any convergence
with absoluteness.
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Integral Test are clearly met. In addition,
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Since this improper integral diverges, then so does our series via the
Integral Test.
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series converges as well.
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SO our series converges absolutely by the ratio test.
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as the Harmonic Series. So, by the Limit Comparison Test,
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Use our analysis of intervals technique to sketch the graph of the plane curve
described by the following parametric equaitions:

x=t?-1

y =t -3t

Note that ax =2t and dy =3t*-3. So, at t =0, our tangent line is vertical and

at t =41, our tangent line is horizontal.
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7. Consider the equations r =2—-4cosf and r =3.
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Clearly sketch the polar graphs of these two equations in the same
Cartesian Coordinate System:
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Determine the area inside the graph of r =3 but outside the graph of
r=2-4cosé.
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At what values of ¢ in the interval [0,27] is dy _ 0?
X
Solving g—rgsin9+ rcos@ =0, or 4sin°@+2cos@—4cos* 0 =0, we have

the following solutions:
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Now, truly, wasn’t that an absolute piece of cake?



