
Math 31           Final Exam            May 21, 2014 
 
Show all of your work, be clear and organized, and nowhere on this exam shall we 
employ the Growth Rate Theorem. 
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2. Using what we know about an infinite geometric series, determine a power series 

representation for    2ln 2f x x   both in expanded form and using our 

summation notation. 
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3. Determine the radius of convergence for the following power series: 
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According to the Ratio Test, we have convergence for the values on x satisfying: 
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So , the radius of convergence is 
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4. Determine whether the series converges or diverges and check any convergence  
with absoluteness. 
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  is decreasing.  The other prerequisites for the 

Integral Test are clearly met.  In addition, 
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Since this improper integral diverges, then so does our series via the 
Integral Test. 
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series converges as well. 
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so our series converges absolutely by the ratio test. 
 

iv)  
2

3
1

1
1

1

n

n

n

n









  

 Note that if  
2

3

1

1

x
f x

x





, then  

   

 

3 2 2

2
3

1 2 3 1

1

x x x x
f x

x

    
 


 

 

 

4 2

2
3

3 2

1

x x x

x

  



 which is clearly negative for all values of 1x  .  It is also 

clear that 
2

3

1
lim 0

1n

n

n





.  So, by the Alternating Series Test, our series 

converges.  Note, however, that 
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as the Harmonic Series.  So, by the Limit Comparison Test, 
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conditionally. 
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 does not evaluate to a single 
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5. Use our analysis of intervals technique to sketch the graph of the plane curve 
described by the following parametric equaitions: 
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Note that 22  and 3 3
dx dy

t t
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   .  So, at 0t  , our tangent line is vertical and 

at 1t   , our tangent line is horizontal. 
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7. Consider the equations 2 4cos  and 3r r   . 

 
i) Clearly sketch the polar graphs of these two equations in the same 

Cartesian Coordinate System: 
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ii) Determine the area inside the graph of 3r   but outside the graph of 

2 4cosr   . 
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 iii) At what values of   in the interval  0,2  is 0
dy

dx
 ? 

Solving sin cos 0
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  , or 2 24sin 2cos 4cos 0     , we have 

the following solutions: 
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Now, truly, wasn’t that an absolute piece of cake? 


