- 1. Use the ε, δ definition of the limit to prove $\lim_{x \to 5} (2x 3) = 7$
- 2. Prove that $\lim_{x\to 3} (x^2 + 2x 5) = 10$
- 3. In answering the following question, round all values to the nearest 0.01. Given $f(x) = \frac{1}{x-2}$, $\lim_{x \to 3} f(x) = 1$, and $\varepsilon = 0.1$, find the largest value of δ such that If $0 < |x-3| < \delta$, then $|f(x)-1| < \varepsilon$.
- 4. Use the ε, δ definition of the limit to prove $\lim_{x\to 5} (3x-4) = 11$

5. Prove that
$$\lim_{x \to 2} (x^2 - 3x + 3) = 1$$

6. Prove that $\lim_{x\to 2} (2x^2 - x - 2) = 4$

More:

- 1. $\lim_{x\to 2} (x^2 3x + 5) = 3$
- 2. $\lim_{x \to 1} (x^2 + 5x + 4) = 10$
- 3. $\lim_{x \to -1} (3x^2 x + 4) = 8$