1. Use the ε, δ definition of the limit to prove $\lim_{x\to 5} (2x-3) = 7$

• <u>Part 1</u>: Find a δ that works:

Given $\varepsilon > 0$, we need to find a δ such that :

$$|2x-3-7| < \varepsilon \text{ whenever } 0 < |x-5| < \delta$$
$$|2x-10| < \varepsilon \text{ whenever } "$$
$$|2(x-5)| < \varepsilon \text{ whenever } "$$
$$2|x-5| < \varepsilon \text{ whenever } "$$
$$|x-5| < \frac{\varepsilon}{2} \text{ whenever } "$$

So, choose $\delta = \frac{\varepsilon}{2}$

• <u>Part 2</u>: Show that this δ works:

Given $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{2}$

If
$$0 < |x-5| < \delta$$
, then $|2x-3-7| = |2x-10|$
= $|2(x-5)|$
= $2|x-5|$
 $< 2 \cdot \delta$
= $2 \cdot \frac{\varepsilon}{2}$
= ε

/ : $\lim_{x\to 5} (2x-3) = 7$

2. Prove that $\lim_{x\to 3} (x^2 + 2x - 5) = 10$:

<u>Part I</u>: Find a δ that works:

Given an $\varepsilon > 0$, we need a $\delta > 0$ such that

 $\begin{aligned} &|(x^2+2x-5)-10| < \varepsilon \text{ whenever } 0 < |x-3| < \delta \\ &\text{But } |(x^2+2x-5)-10| < \varepsilon \text{ whenever } 0 < |x-3| < \delta \\ &\text{is equivalent to:} \\ &|x^2+2x-15| < \varepsilon \text{ whenever } 0 < |x-3| < \delta \\ &|(x+5)(x-3)| < \varepsilon \text{ whenever } 0 < |x-3| < \delta \\ &|x+5| \cdot |x-3| < \varepsilon \text{ whenever } 0 < |x-3| < \delta \end{aligned}$

If we can find some number C such that |x+5| < C, then we will have that

$$|x-3| < \frac{\varepsilon}{C}$$
, and we will choose $\delta = \frac{\varepsilon}{C}$.

Aside: Find C:

A reasonable choice for δ is 1. If we choose $\delta=1$, then we have that:

0 < |x-3| < 1-1 < x - 3 < 1 7 < x + 5 < 9 |x + 5| < 9

So, we now have a value for *C* to be 9. Thus, an alternative to 1 as a choice for δ is $\mathcal{E}/_{q}$.

Now that we have two values for δ , to ensure that we obtain the desired tolerance value ε , we will choose $\delta = \min\{1, \frac{\varepsilon}{9}\}$.

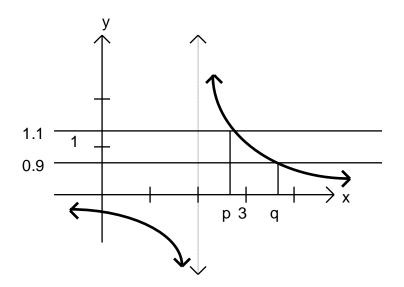
<u>Part II</u>: Show that our choice for δ works:

Given
$$\varepsilon > 0$$
, choose $\delta = \min\{1, \frac{\varepsilon}{9}\}$.
If $0 < |x-3| < \delta$, then $|(x^2 + 2x - 5) - 10| = |x^2 + 2x - 15|$
 $= |(x+5)(x-3)|$
 $= |x+5| \cdot |x-3|$
Note: If $\delta = 1$, then $0 < |x-3| < 1$
which implies $-1 < x - 3 < 1$
i.e., $7 < x + 5 < 9$
or $|x+5| < 9$

But, if $\delta = \frac{\varepsilon}{9}$, then we have that $0 < |x-3| < \frac{\varepsilon}{9}$ Now we have that $|(x^2 + 2x - 5) - 10| = |x+5| \cdot |x-3|$ $< 9 \cdot \frac{\varepsilon}{9}$ $= \varepsilon$ We have shown that If $0 < |x-3| < \delta$, then $|(x^2 + 2x - 5) - 10| < \varepsilon$

 $/:: \lim_{x \to 3} (x^2 + 2x - 5) = 10$

3. In answering the following problem, round all values to the nearest 0.01. Given $f(x) = \frac{1}{x-2}$, $\lim_{x \to 3} f(x) = 1$, and $\varepsilon = 0.1$, find the largest value of δ such that If $0 < |x-3| < \delta$, then $|f(x)-1| < \varepsilon$. Draw a picture to support your claim.



• <u>Note</u>: To find the values of *p* and *q* in the above picture, solve the equations:

$$\frac{1}{p-2} = 1.1 \qquad \qquad \frac{1}{q-2} = 0.9$$
$$\frac{1}{1.1} = p-2 \qquad \qquad \frac{1}{0.9} = q-2$$
$$p = 2 + \frac{1}{1.1} \qquad \qquad q = 2 + \frac{1}{0.9}$$
$$p \approx 2.91 \qquad \qquad q \approx 3.11$$

• <u>Choose</u> δ as follows:

$$\delta = \min\{|3 - p|, |3 - q|\}$$

= min{0.09,0.11}
= 0.09

Consider that the above suggests that if a value of x is chosen within 0.09 units from 3, f(x) is guaranteed to be within 0.1 units of 1.

- 4. Use the ε , δ definition of the limit to prove $\lim_{x\to 5} (3x-4) = 11$
 - <u>Part 1</u>: Find a δ that works:

Given $\varepsilon > 0$, we need to find a δ such that :

$$|3x-4-11| < \varepsilon \text{ whenever } 0 < |x-5| < \delta$$
$$|3x-15| < \varepsilon \text{ whenever } "$$
$$|3(x-5)| < \varepsilon \text{ whenever } "$$
$$3|x-5| < \varepsilon \text{ whenever } "$$
$$|x-5| < \frac{\varepsilon}{3} \text{ whenever } "$$

So, choose $\delta = \frac{\varepsilon}{3}$

• <u>Part 2</u>: Show that this δ works:

Given $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{3}$ If $0 < |x-5| < \delta$, then |3x-4-11| = |3x-15| = |3(x-5)| = 3|x-5| $< 3 \cdot \delta$ $= 3 \cdot \frac{\varepsilon}{3}$ $= \varepsilon$

 $/::\lim_{x\to 5}(3x-4)=11$

5. Prove that $\lim_{x\to 2} (x^2 - 3x + 3) = 1$: Part I: Find a δ that works: Given an $\varepsilon > 0$, we need a $\delta > 0$ such that $|(x^2 - 3x + 3) - 1| < \varepsilon \text{ whenever } 0 < |x - 2| < \delta$ But $|(x^2 - 3x + 3) - 1| < \varepsilon$ is equivalent to: $|x^2 - 3x + 2| < \varepsilon$ $|(x - 1)(x - 2)| < \varepsilon$ $|x - 1| \cdot |x - 2| < \varepsilon$

If we can find some number *C* such that |x-1| < C, then we will have that $|x-2| < \frac{\varepsilon}{C}$, and we will choose $\delta = \frac{\varepsilon}{C}$. Aside: Find *C*:

A reasonable choice for δ is 1. If we choose $\delta=1$, then we have that:

0 < |x-2| < 1-1 < x - 2 < 1 0 < x - 1 < 2|x-1| < 2

So, we now have a value for C to be 2. Thus, an alternative to 1 as a choice for δ is $\frac{\varepsilon}{2}$.

Now that we have two values for δ , to ensure that we obtain the desired tolerance value ε , we will choose $\delta = \min\{1, \frac{\varepsilon}{2}\}$.

<u>Part II</u>: Show that our choice for δ works: Given $\epsilon > 0$, choose $\delta = \min\{1, \frac{\varepsilon}{2}\}$. If $0 < |x-2| < \delta$, then $|(x^2 - 3x + 3) - 1| = |x^2 - 3x + 2|$

$$= |(x-1)(x-2)|$$

$$= |x-1| \cdot |x-2|$$
Note: If δ =1, then $0 < |x-2| < 1$
Which implies $-1 < x - 2 < 1$
i.e., $0 < x - 1 < 2$
or $|x-1| < 2$
But, if $\delta = \frac{\varepsilon}{2}$, then we have that $0 < |x-2| < \frac{\varepsilon}{2}$

Now we have that $|(x^2 - 3x + 3) - 1| = |x - 1| \cdot |x - 2|$ $< 2 \cdot \frac{\varepsilon}{2}$

We have shown that If $0 < |x-2| < \delta$, then $|(x^2 - 3x + 3) - 1| < \varepsilon$ /:.. $\lim_{x \to 3} (x^2 - 3x + 3) = 1$

6. Prove that $\lim_{x \to 2} (2x^2 - x - 2) = 4$: Part I: Find a δ that works: Given an $\varepsilon > 0$, we need a $\delta > 0$ such that $\begin{aligned} \left| \left(2x^2 - x - 2 \right) - 4 \right| < \varepsilon & \text{whenever } 0 < |x - 2| < \delta \end{aligned}$ But $\left| \left(2x^2 - x - 2 \right) - 4 \right| < \varepsilon & \text{whenever } 0 < |x - 2| < \delta \end{aligned}$ is equivalent to: $\left| 2x^2 - x - 6 \right| < \varepsilon & \text{whenever } 0 < |x - 2| < \delta \end{aligned}$ $\left| \left(2x + 3 \right) (x - 2) \right| < \varepsilon & \text{whenever } 0 < |x - 2| < \delta \end{aligned}$ $\left| 2x + 3 \right| |x - 2| < \varepsilon & \text{whenever } 0 < |x - 2| < \delta \end{aligned}$

If we can find some number C such that |2x+3| < C, then we will have that

$$|x-2| < \mathcal{E}/C$$
, and we will choose $\delta = \mathcal{E}/C$.

Aside: Find C:

A reasonable choice for δ is 1. If we choose $\delta = 1$, then we have that:

0 < |x-2| < 1-1 < x - 2 < 1 -2 < 2x - 4 < 2 5 < 2x + 3 < 9 |2x + 3| < 9

So, we now have a value for *C* to be 9. Thus, an alternative to 1 as a choice for δ is $\frac{\varepsilon}{9}$.

Now that we have two values for δ , to ensure that we obtain the desired tolerance value ε , we will choose $\delta = \min\{1, \frac{\varepsilon}{Q}\}$.

<u>Part II</u>: Show that our choice for δ works:

Given $\varepsilon > 0$, choose $\delta = \min\{1, \frac{\varepsilon}{9}\}$. If $0 < |x-2| < \delta$, then $|(2x^2 - x - 2) - 4| = |2x^2 - x - 6|$ = |(2x+3)(x-2)| $= |2x+3| \cdot |x-2|$ Note: If $\delta = 1$, then 0 < |x-2| < 1which implies -1 < x - 2 < 1so -2 < 2x - 4 < 2i.e., 5 < 2x + 3 < 9or |2x+3| < 9

But, if $\delta = \frac{\varepsilon}{9}$, then we have that $0 < |x-2| < \frac{\varepsilon}{9}$ Now we have that $|(2x^2 - x - 2) - 4| = |2x + 3| \cdot |x - 2|$ $< 9 \cdot \frac{\varepsilon}{9}$ $= \varepsilon$ We have shown that If $0 < |x-2| < \delta$, then $|(2x^2 - x - 2) - 4| < \varepsilon$

We have shown that If $0 < |x-2| < \delta$, then $|(2x^2 - x - 2) - 4| < \varepsilon$ /:. $\lim_{x \to 2} (2x^2 - x - 2) = 4$