Provide a presentation that is both clear and organized. Show all of your work, completely simplify all answers, and provide exact values only.

1. (12 pts) Let $f(x)=\frac{\sqrt{12 x^{3}+8 x^{2}-x-1}}{3 x^{2}-7 x+2}$. Determine the domain of f in interval notation.

$$
\operatorname{dom} f=\left\{-\frac{1}{2}\right\} \cup\left(\frac{1}{3}, 2\right) \cup(2, \infty)
$$

2. (7 pts) Let $f(x)=\left\{\begin{array}{ll}\frac{x^{3}-1}{x-1} & \text { if } x \neq 1 \\ 5 & \text { if } x=1\end{array}\right.$ Find a function g that agrees with $f \forall x \in R$ except at $x=1$ but is continuous $\forall x \in R$

$$
g(x)=x^{2}+x+1 \text {, but answers might vary }
$$

3. (16 pts) Evaluate the following limits, if they exist. If they do not, state such. If a limit does not exist as a finite real number but the algebraic expression within the limit increases or decreases without bound, then state such with the appropriate notation.
i) $\quad \lim _{x \rightarrow-\infty} \frac{x-3}{2 x+\sqrt{5 x^{2}+x}}=\frac{1}{2-\sqrt{5}}$
ii) $\lim _{x \rightarrow 0} \frac{(x+3)^{5}-243}{x}=\binom{5}{4} \cdot 3^{4}=405$
4. (16 pts) Evaluate the following limits, if they exist. If they do not, state such. If a limit does not exist as a finite real number but the algebraic expression within the limit increases or decreases without bound, then state such with the appropriate notation.
i) $\quad \lim _{x \rightarrow 0} \frac{\sqrt{2 x+3}-\sqrt{3}}{x}=\frac{1}{\sqrt{3}}$
ii) $\quad \lim _{x \rightarrow 2} \frac{x^{2}-x-2}{(x-2)^{3}}=\infty$
5. (14 pts) Use our limit laws to establish that f is continuous over $(-\infty, 3]$ if $f(x)=2-\sqrt{3-x}$ (include one-sided continuity).
i) First, we will show that f is cts over $(-\infty, 3)$:

$$
\text { If } x \in(-\infty, 3) \text {, then } \lim _{x \rightarrow a} f(x)=\cdots=f(a)
$$

ii) Secondly, we will now show left-handed continuity at $x=3$:

$$
\lim _{x \rightarrow 3^{-}} f(x)=\cdots=f(3)
$$

6. (10 pts) Let $f(x)=\left\{\begin{array}{cc}\frac{x^{2}}{2 x-c} & \text { if } x \geq 2 \\ 2 c x+3 & \text { if }<2\end{array}\right.$ Determine all values of c for which f is continuous over $(-\infty, \infty)$

$$
c=\frac{13 \pm 3 \sqrt{33}}{8}
$$

7. (15 pts) Determine the equation of the tangent line to the graph of $y=f(x)$ at $x=-1$ if $f(x)=\sqrt{3-2 x}$. Put your answer in slope-intercept form.

$$
y=-\frac{1}{\sqrt{5}} x+\frac{4}{\sqrt{5}}
$$

8. (10 pts) Using our precise definition of the limit, prove that $\lim _{x \rightarrow 2}\left(5 x^{2}-x+2\right)=20$ Hopefully, we had plenty of practice with this definition.
