Provide a clear and organized presentation. Show all of your work, give exact values only, and completely simplify your answers.

1. If $f(x)=\frac{\sqrt{18 x^{3}+3 x^{2}-4 x-1}}{x-e}$, determine the domain of f in interval notation.

$$
\begin{array}{r|rrr}
\frac{1}{2} & \begin{array}{rrrr}
18 & 3 & -4 & -1 \\
& 9 & 6 & 1 \\
\hline 18 & 12 & 2 & 0
\end{array}
\end{array}
$$

So, we now have that: $\quad f(x)=\frac{\sqrt{18 x^{3}+3 x^{2}-4 x-1}}{x-e}$

$$
\begin{aligned}
& =\frac{\sqrt{\left(x-\frac{1}{2}\right)\left(18 x^{2}+12 x+2\right)}}{x-e} \\
& =\frac{\sqrt{(2 x-1)\left(9 x^{2}+6 x+1\right)}}{x-e} \\
& =\frac{\sqrt{(2 x-1)(3 x+1)^{2}}}{x-e}
\end{aligned}
$$

Now, we have that $(2 x-1)(3 x+1)^{2} \geq 0$ and $x \neq e$
On a number line, this gives us:

In interval notation, this gives us:

$$
\operatorname{dom} f=\left\{-\frac{1}{3}\right\} \cup\left[\frac{1}{2}, e\right) \cup(e, \infty)
$$

2. If $f(x)=\frac{x}{x^{2}-2}$, determine $\frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\frac{x+h}{(x+h)^{2}-2}-\frac{x}{x^{2}-2}}{h} \\
& =\frac{(x+h)\left(x^{2}-2\right)-x\left(x^{2}+2 h x+h^{2}-2\right)}{h\left(x^{2}-2\right)\left((x+h)^{2}-2\right)} \\
& =\frac{x^{3}-2 x+h x^{2}-2 h-x^{3}-2 h x^{2}-h^{2} x+2 x}{h\left(x^{2}-2\right)\left((x+h)^{2}-2\right)} \\
& =\frac{-h x^{2}-2 h-h^{2} x}{h\left(x^{2}-2\right)\left((x+h)^{2}-2\right)} \\
& =\frac{-x^{2}-2-h x}{\left(x^{2}-2\right)\left((x+h)^{2}-2\right)}
\end{aligned}
$$

