Provide a clear and organized presentation. Show all of your work, give exact values only, and completely simplify your answer.

If $f(x)=\frac{\sqrt{3 x^{3}-2 x^{2}-4 x-1}}{x-\pi^{2}}$, determine the domain of f in interval notation.

$$
\begin{array}{r|rrr}
-\frac{1}{3} & \begin{array}{rrrr}
3 & -2 & -4 & -1 \\
& & -1 & 1
\end{array} & 1 \\
\hline 3 & -3 & -3 & 0
\end{array}
$$

So, we now have that: $\quad f(x)=\frac{\sqrt{3 x^{3}-2 x^{2}-4 x-1}}{x-\pi^{2}}$

$$
\begin{aligned}
& =\frac{\sqrt{\left(x+\frac{1}{3}\right)\left(3 x^{2}-3 x-3\right)}}{x-\pi^{2}} \\
& =\frac{\sqrt{(3 x+1)\left(x^{2}-x-1\right)}}{x-\pi^{2}}
\end{aligned}
$$

Now, we have that $(3 x+1)\left(x^{2}-x-1\right) \geq 0$ and $x \neq \pi^{2}$
On a number line, this gives us:

In interval notation, this gives us:

$$
\operatorname{dom} f=\left[\frac{1-\sqrt{5}}{2},-\frac{1}{3}\right] \cup\left[\frac{1+\sqrt{5}}{2}, \pi^{2}\right) \cup\left(\pi^{2}, \infty\right)
$$

