Water from a conical filter drips into a cup that is in the shape of a right circular cylinder. The dimensions of the cone and cup are given in the picture below. Let x represent the depth of the water in the filter and y the depth of the water in the cup. If $30 \pi \mathrm{in}^{3}$ of water is poured into the filter and drips out of the filter at a rate of $3 \mathrm{in}^{3} / \mathrm{min}$. , then how fast is the water level in the cone changing when $x=1$ in.? How fast is the water level in the cup changing when $x=1$ in.? What is the depth of the water in the cup when $x=1$ in.? Give exact values first, then approximate to the nearest 0.01 .

10"

- Find $\frac{d x}{d t}$: Relating the quantities V, r, and x in the cone, we have that:

$$
\begin{equation*}
V=\frac{1}{3} \pi r^{2} x \tag{1}
\end{equation*}
$$

Note that if we treat V, r, and x as functions of time t, then to differentiate the right-hand side w.r.t. t, we must employ a combination of the product rule and the chain rule. In addition, we will have obtained an equation in $\frac{d V}{d t}, \frac{d r}{d t}, \frac{d x}{d t}, r$, and x. To avoid this, let's rewrite V solely in terms of x, and then differentiate implicitly with respect to t. To accomplish this, consider the following relationship between x and r due to our having two triangles that are similar:

By similar triangles, we have that $\frac{r}{5}=\frac{x}{6}$

$$
\text { i.e., } r=\frac{5}{6} x
$$

Substituting this expression in x for r into equation (1), we have that:

$$
\begin{aligned}
& V=\frac{1}{3} \pi\left(\frac{5}{6} x\right)^{2} x \\
& V=\frac{25}{108} \pi x^{3}
\end{aligned}
$$

Now, Treating both V and x as functions of time t and differentiating w.r.t. t, we see that:

$$
\frac{d V}{d t}=\frac{75}{108} \pi x^{2} \frac{d x}{d t}
$$

Substituting into this equation values known when $x=1$ in., we have that:

$$
\begin{aligned}
-3 & =\frac{75}{108} \pi 1^{2} \frac{d x}{d t} \\
\frac{d x}{d t} & =-3 \cdot \frac{108}{75} \cdot \frac{1}{\pi} \\
& =-\frac{108}{25 \pi} \mathrm{in} / \mathrm{min} . \\
& \approx-1.38 \mathrm{in} / \mathrm{min} .
\end{aligned}
$$

- Next, we need to find $\frac{d y}{d t}$: Relating the quantities V, r, and y in the right circular cylinder, note that r is fixed at 5 inches. So, we have that:

$$
\begin{aligned}
& V=\pi r^{2} y \\
& V=\pi \cdot 25 \cdot y \\
& V=25 \pi y
\end{aligned}
$$

Treating both V and y as functions in time t and differentiating with respect to t, we have:

$$
\begin{aligned}
\frac{d V}{d t} & =25 \pi \frac{d y}{d t} \\
3 & =25 \pi \frac{d y}{d t} \\
\frac{d y}{d t} & =\frac{3}{25 \pi} \mathrm{in} / \mathrm{min} . \\
& \approx 0.04 \mathrm{in} / \mathrm{min} .
\end{aligned}
$$

- Finally, to find the depth of the water y when $x=1$ in., note that $V_{\text {cy linder }}=30 \pi-V_{\text {cone }}$. Now, when $x=1$ in., we have that:

$$
\begin{aligned}
V_{\text {cy linder }} & =30 \pi-\frac{1}{3} \pi \cdot\left(\frac{5}{6}\right)^{2} \cdot 1 \\
& =30 \pi-\frac{25}{108} \pi \\
& =\frac{3215}{108} \pi
\end{aligned}
$$

Consequently, we have that:

$$
\begin{aligned}
y & =\frac{V_{\text {cy linder }}}{\pi r^{2}} \\
& =\frac{\frac{3215}{108} \pi}{\pi \cdot 5^{2}} \\
& =\frac{643}{540} \mathrm{in} . \\
& \approx 1.19 \mathrm{in} .
\end{aligned}
$$

