Provide a clear and organized presentation. In class, we proved one half of the Rational Root Theorem. Prove the other half.

Let the polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ have a integer coefficients and a rational zero, say $r$. Then $\exists p, q \in Z$ such that $r=\frac{p}{q}$ where, WLOG, we can assume that $\frac{p}{q}$ is completely reduced. Consequently,

$$
\begin{aligned}
& a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{2} r^{2}+a_{1} r+a_{0}=0 \\
& a_{n}\left(\frac{p}{q}\right)^{n}+a_{n-1}\left(\frac{p}{q}\right)^{n-1}+\cdots+a_{2}\left(\frac{p}{q}\right)^{2}+a_{1} \frac{p}{q}+a_{0}=0 \\
& a_{n} p^{n}+a_{n-1} p^{n-1} q+\cdots+a_{2} p^{2} q^{n-2}+a_{1} p q^{n-1}+a_{0} q^{n}=0 \\
& a_{n-1} p^{n-1} q+\cdots+a_{2} p^{2} q^{n-2}+a_{1} p q^{n-1}+a_{0} q^{n}=-a_{n} p^{n} \\
& q\left(a_{n-1} p^{n-1}+\cdots+a_{2} p^{2} q^{n-3}+a_{1} p q^{n-2}+a_{0} q^{n-1}\right)=-a_{n} p^{n}
\end{aligned}
$$

Note that $q$ divides evenly into the left hand side of the equation. Therefore, $q$ divides evenly into the right hand side. i.e.,

$$
\begin{gathered}
q \mid a_{n} p^{n} \\
\text { so, } q \mid a_{n} \text { or } q \mid p^{n}
\end{gathered}
$$

But the latter is a contradiction because $\frac{p}{q}$ is completely reduced.
$\therefore q \mid a_{n}$

