Determine if each of the following constitute rings (assume the standard operations of addition, unless otherwise specified):

1. $R=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}\right\}$. The key, or work, here is to show closure for both operations.
2. $R=\left\{\left.\left[\begin{array}{ll}\delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22}\end{array}\right] \right\rvert\, \delta_{i j}=1\right.$ if $i=j \wedge \delta_{i j}=0$ if $\left.i \neq j\right\}$
3. $R=\left\{\left.\left[\begin{array}{ll}a & b \\ b & a\end{array}\right] \right\rvert\, a, b \in R\right\}$
4. $\quad R=\mathbb{R}$ where the addition operation is standard subtraction in the reals.
5. $\quad R=\mathbb{C}$ (i.e., the set of complex numbers). Here, too, concentrate on closure.
6. The set of imaginary numbers.
7. $R=\{0,1\}$ where the multiplication is normal but addition is defined by the following table:

+	0	1
0	1	0
1	0	1

