Provide both a clear and organized presentation. Show all of your work and give exact values only. A definition of a ring is on the last page of this exam.

1. (15 pts$)$ Prove that if $a=b \bmod 2$ and $a=c \bmod 2$, then $b=c \bmod 2$

$$
\begin{aligned}
a=b \bmod 2 \text { and } a=c \bmod 2 & \Rightarrow 2 \mid(a-b) \text { and } 2 \mid(a-c) \\
& \Rightarrow a-b=2 k_{1} \text { and } a-c=2 k_{2} \text { for some } k_{1}, k_{2} \in \mathbb{Z}
\end{aligned}
$$

Subtracting the first equation from the second gives us that:

$$
\begin{aligned}
& b-c=2 k_{2}-2 k_{1} \text { for some } k_{1}, k_{2} \in \mathbb{Z} \\
& \Rightarrow b-c=2\left(k_{2}-k_{1}\right) \\
& \Rightarrow b-c=2 k_{3} \text { where } k_{3}=k_{1}+k_{2} \in \mathbb{Z} \\
& \Rightarrow 2 \mid(b-c) \\
& \Rightarrow b=c \bmod 2
\end{aligned}
$$

2. (25 pts) Determine why each of the following does not form a ring over the indicated operations:
i) $\quad R=\{a \cdot \phi \mid a \in \mathbb{Q} \wedge \phi$ is the golden ratio $\}$ with the usual operations of addition and multiplication in \mathbb{R}. Recall that $\phi=\frac{1+\sqrt{5}}{2}$

$$
\begin{aligned}
\phi \cdot \phi & =\frac{1+\sqrt{5}}{2} \cdot \frac{1+\sqrt{5}}{2} \\
& =\frac{6+2 \sqrt{5}}{4} \\
& =\frac{3+\sqrt{5}}{2} \\
& \neq k \cdot \frac{1+\sqrt{5}}{2} \text { for any rational number } k
\end{aligned}
$$

So, we do not have closure for multiplication.
ii) $\quad R=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ with the usual operations of addition and multiplication in \mathbb{Q}.

$$
\frac{1}{2}+\frac{1}{3}=\frac{5}{6} \notin R \text {, so we do not have closure for addition. }
$$

iii) $\quad R=\mathbb{R}$ with the usual operation of addition in \mathbb{R} and multiplication is defined by $a \cdot b=1 \quad \forall a, b \in \mathbb{R}$.

$$
\begin{aligned}
a \cdot(b+c) & =1 \\
& \neq 1+1 \\
& =a \cdot b+a \cdot c
\end{aligned}
$$

Consequently, we fail to satisfy our distributive properties.
3. (15 pts) Use an augmented matrix to derive that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

$$
\begin{aligned}
{\left[\begin{array}{ll|ll}
a & b & 1 & 0 \\
c & d & 0 & 1
\end{array}\right] } & \sim\left[\begin{array}{cc|cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
c & d & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{ccc|cc}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & -c \cdot \frac{b}{a}+d & -\frac{c}{a} & 1
\end{array}\right] \\
& \sim\left[\begin{array}{ll|ll}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & \left.\frac{a d-b c}{a} \right\rvert\,-\frac{c}{a} & 1
\end{array}\right] \\
& \sim\left[\begin{array}{ll|ll}
1 & \frac{b}{a} & \frac{1}{a} & 0 \\
0 & 1 & -\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \\
& \sim\left[\begin{array}{ll|l}
1 & \frac{b}{a} & \frac{b c}{a(a d-b c)}+\frac{1}{a} \\
0 & 1 & -\frac{b}{a d-b c} \\
\hline & \sim\left[\begin{array}{l}
a d-b c \\
a d-b c
\end{array}\right] \\
1 & \frac{b}{a} & \frac{b c+a d-b c}{a(a d-b c)} \\
0 & 1 & -\frac{b}{a d-b c} \\
-\frac{c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \\
& \sim\left[\begin{array}{ll|l}
1 & \frac{b}{a} & \frac{d}{a d-b c} \\
0 & -\frac{b}{a d-b c} \\
0 & 1 & -\frac{c}{a d-b c} \\
\frac{a}{a d-b c}
\end{array}\right]
\end{aligned}
$$

$$
\text { Consequently, }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

4. (15 pts) Solve the following system of linear equations by either the inverse matrix method or Cramer's rule:

$$
\begin{aligned}
& 2 x+y-3 z=-14 \\
& x+2 y+5 z=24 \\
& 3 x-y+2 z=14
\end{aligned}
$$

5. (10 pts) Consider the following graph:

Use the nearest neighbor method to minimize a circuit starting at vertex A. Give its path (i.e., A-E-C-etc.) and its value.

6. (10 pts) Consider the following graph:

Use the cheapest link method to minimize a circuit starting at vertex A. Give its path (i.e., A-E-C-etc.) and its value.

7. (10 pts) Consider the following graph:

Determine the minimal spanning tree for the above graph, draw it below and provide its value.

Def: A ring is a non-empty set R along with two operations,+ satisfying:

$$
\begin{aligned}
& a+b=b+a \quad \forall a, b \in R \\
& (a+b)+c=a+(b+c) \quad \forall a, b, c \in R \\
& \exists e \in R \text { such that } a+e=e+a=a \quad \forall a \in R \\
& \forall a \in R, \exists b \in R \text { such that } a+b=b+a=e \\
& (a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \forall a, b, c \in R \\
& a \cdot(b+c)=a \cdot b+a \cdot c \quad \forall a, b, c \in R \\
& (a+b) \cdot c=a \cdot c+b \cdot c \quad \forall a, b, c \in R
\end{aligned}
$$

Recall that $\mathbb{N}=$ the set of natural numbers
$\mathbb{Q}=$ set of rational numbers
$\mathbb{R}=$ set of real numbers

