Math 15	Exam IV	April 30, 2018

Provide both a clear and organized presentation. Show all of your work and give exact values only. A definition of a ring is on the last page of this exam.

1. (15 pts) Prove that if $a = b \mod 2$ and $a = c \mod 2$, then $b = c \mod 2$

- 2. (25 pts) Determine why each of the following does not form a ring over the indicated operations:
 - i) $R = \{a \cdot \phi | a \in \mathbb{Q} \land \phi \text{ is the golden ratio}\}$ with the usual operations of addition and multiplication in \mathbb{R} . Recall that $\phi = \frac{1 + \sqrt{5}}{2}$

ii)
$$R = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$$
 with the usual operations of addition and multiplication in \mathbb{Q} .

iii) $R = \mathbb{R}$ with the usual operation of addition in \mathbb{R} and multiplication is defined by $a \cdot b = 1 \quad \forall a, b \in \mathbb{R}$.

3. (15 pts) Use an augmented matrix to derive that
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

4. (15 pts) Solve the following system of linear equations by either the inverse matrix method or Cramer's rule:

$$2x + y - 3z = -14$$

 $x + 2y + 5z = 24$
 $3x - y + 2z = 14$

5. (10 pts) Consider the following graph:

Use the nearest neighbor method to minimize a circuit starting at vertex A. Give its path (i.e., A-E-C-etc.) and its value.

6. (10 pts) Consider the following graph:

Use the cheapest link method to minimize a circuit starting at vertex A. Give its path (i.e., A-E-C-etc.) and its value.

7. (10 pts) Consider the following graph:

Determine the minimal spanning tree for the above graph, draw it below and provide its value.

<u>Def</u>: A <u>ring</u> is a non-empty set R along with two operations $+, \cdot$ satisfying:

$$a+b=b+a \quad \forall a,b \in R$$

$$(a+b)+c=a+(b+c) \quad \forall a,b,c \in R$$

$$\exists e \in R \text{ such that } a+e=e+a=a \quad \forall a \in R$$

$$\forall a \in R, \exists b \in R \text{ such that } a+b=b+a=e$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c) \quad \forall a,b,c \in R$$

$$a \cdot (b+c) = a \cdot b+a \cdot c \quad \forall a,b,c \in R$$

$$(a+b) \cdot c = a \cdot c+b \cdot c \quad \forall a,b,c \in R$$

Recall that	\mathbb{N} = the set of natural numbers
	\mathbb{Q} = set of rational numbers
	\mathbb{R} = set of real numbers