Provide both a clear and organized presentation. Show all of your work and give exact values only. A definition of a ring is on the last page of this exam.

1. (15 pts) Prove that if $a=b \bmod 2$ and $a=c \bmod 2$, then $b=c \bmod 2$
2. (25 pts) Determine why each of the following does not form a ring over the indicated operations:
i) $\quad R=\{a \cdot \phi \mid a \in \mathbb{Q} \wedge \phi$ is the golden ratio $\}$ with the usual operations of addition and multiplication in \mathbb{R}. Recall that $\phi=\frac{1+\sqrt{5}}{2}$
ii) $\quad R=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ with the usual operations of addition and multiplication in \mathbb{Q}.
iii) $\quad R=\mathbb{R}$ with the usual operation of addition in \mathbb{R} and multiplication is defined by $a \cdot b=1 \quad \forall a, b \in \mathbb{R}$.
3. (15 pts) Use an augmented matrix to derive that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
4. (15 pts) Solve the following system of linear equations by either the inverse matrix method or Cramer's rule:

$$
\begin{aligned}
& 2 x+y-3 z=-14 \\
& x+2 y+5 z=24 \\
& 3 x-y+2 z=14
\end{aligned}
$$

5. (10 pts) Consider the following graph:

Use the nearest neighbor method to minimize a circuit starting at vertex A. Give its path (i.e., A-E-C-etc.) and its value.
6. (10 pts) Consider the following graph:

Use the cheapest link method to minimize a circuit starting at vertex A. Give its path (i.e., A-E-C-etc.) and its value.
7. (10 pts) Consider the following graph:

Determine the minimal spanning tree for the above graph, draw it below and provide its value.

Def: A ring is a non-empty set R along with two operations,+ satisfying:

$$
\begin{aligned}
& a+b=b+a \quad \forall a, b \in R \\
& (a+b)+c=a+(b+c) \quad \forall a, b, c \in R \\
& \exists e \in R \text { such that } a+e=e+a=a \quad \forall a \in R \\
& \forall a \in R, \exists b \in R \text { such that } a+b=b+a=e \\
& (a \cdot b) \cdot c=a \cdot(b \cdot c) \quad \forall a, b, c \in R \\
& a \cdot(b+c)=a \cdot b+a \cdot c \quad \forall a, b, c \in R \\
& (a+b) \cdot c=a \cdot c+b \cdot c \quad \forall a, b, c \in R
\end{aligned}
$$

Recall that $\mathbb{N}=$ the set of natural numbers
$\mathbb{Q}=$ set of rational numbers
$\mathbb{R}=$ set of real numbers

