Provide a clear and organized presentation. Show all of your work, completely simplify your answers, and provide exact values only.

1. My cat Pythagoras has amassed a large collection of pets. He has 7 lizards, five mice, and 8 snakes. Determine the probability that if he grabs three of these critters with which to play, they will be of the same type.

$$
\binom{7}{3}+\binom{5}{3}+\binom{8}{3}=101
$$

2. Meanwhile, my other cat Theta is playing with my coins. He has in his possession one of my unfair coins that has a probability of $\frac{2}{3}$ for showing heads. What is the probability of tossing this coin three times and having a heads showing at least twice?

$$
\binom{3}{2} \cdot\left(\frac{2}{3}\right)^{2} \cdot \frac{1}{3}+\binom{3}{3} \cdot\left(\frac{2}{3}\right)^{3}=\frac{20}{27}
$$

3. I have been worried that Pythagoras has depression related to the rain. For the past 80 days, I have noted which days have experienced rain and which days during which Pythagoras has had a good day. Here are my findings:

	good	bad	
rain	20	10	30
no rain	30	20	50
	50	30	80

Does the rain have an effect on Pythagoras' mood?
Yes, because $p(g)=\frac{50}{80}=\frac{5}{8} \neq \frac{2}{3}=\frac{20}{30}=p(g \mid r)$
4. Answer each of the following:
i) Let p and q be natural numbers. If $g c f(p, q)=7$, then determine

$$
\begin{aligned}
& \operatorname{Icm}(p, q) \\
& \qquad \operatorname{lcm}(p, q)=\frac{p q}{7}
\end{aligned}
$$

ii) Let m and n be natural numbers. Under what conditions is $\operatorname{gcf}(m, n)=n$? m is a multiple of n (or n is a factor of m).
5. Let p, q, and r be distinct primes and let a, b, and c be natural numbers for which $a<b<c$.
i) Determine both the $\operatorname{gcf}\left(p^{b} q^{c} r^{a}, p^{c} q^{a} r^{b}\right)$ and the $\operatorname{lcm}\left(p^{b} q^{c} r^{a}, p^{c} q^{a} r^{b}\right)$

The gcf is $p^{b} q^{a} r^{a}$ and the $I c m$ is $p^{c} q^{c} r^{b}$
ii) If the $\operatorname{Icm}(a, b)=p^{8} q^{13}$ and $a=p^{8} q^{7}$, then determine a possible representation of b.
b has not more than 8 factors of p and exactly 13 factors of q.
6. Consider the Fibonacci sequence: $f_{1}, f_{2}, f_{3}, f_{4}, \ldots$. Next, create a new sequence $d_{1}, d_{2}, d_{3}, d_{4}, \ldots$ for which $d_{n}=\frac{f_{n+1}}{f_{n}}$. Determine the value of $\lim _{n \rightarrow \infty} d_{n}$
d is, of course, simply the golden ratio.
7. In the Republic of Flatland, cars are either sedans or coups. In particular, 30\% of all cars are sedans and 70% are coups. However, 10% of the sedans are outdated, whereas 20% of all coups are outdated. What is the probability that an arbitrarily chosen car is a sedan if it is known that it is outdated?

$$
\frac{30 \% \cdot 10 \%}{30 \% \cdot 10 \%+70 \% \cdot 20 \%}=\frac{3}{17}
$$

8. Use the Euclidean algorithm to determine gcf $(2100,6237)$ and then rewrite this gcf as a linear combination of 2100 and 6237.

$$
\begin{aligned}
& 6237=2 \cdot 2100+2037 \\
& 2100=1 \cdot 2037+63 \\
& 2037=32 \cdot 63+21 \\
& 63=3 \cdot 21
\end{aligned}
$$

Because 21 is the last non-zero remainder, it is the gcf and

$$
21=-98 \cdot 2100+33 \cdot 6237
$$

9. Prove that $(A \backslash C) \cap(B \backslash C) \subseteq(A \cup B) \backslash C$

$$
\begin{aligned}
& \text { let } x \in(A \backslash C) \cap(B \backslash C) \\
& \Rightarrow x \in(A \backslash C) \text { and } x \in(B \backslash C) \\
& \Rightarrow x \in(A \backslash C) \\
& \Rightarrow x \in A \text { and } x \notin C \\
& \Rightarrow(x \in A \text { or } x \in B) \text { and } x \notin C \\
& \Rightarrow x \in A \cup B \text { and } x \notin C \\
& \Rightarrow x \in(A \cup B) \backslash C \\
& I \therefore(A \backslash C) \cap(B \backslash C) \subseteq(A \cup B) \backslash C
\end{aligned}
$$

10. Show that the following is a golden triangle:

Now the small lower triangle is similar to the original large one. Consequently, sides are proportional. In particular,

$$
\begin{aligned}
& \frac{x}{1}=\frac{1}{x-1} \\
& x(x-1)=1 \\
& x^{2}-x-1=0 \\
& x=\frac{1+\sqrt{5}}{2} \\
& \quad=\phi
\end{aligned}
$$

