
Math 12    Solving a System of Three Equations in Three Unknowns Fall, 2018 
 
In our investigation of techniques that will allow us to solve a system of three equations 
in three unknowns, we will discover several techniques.  Namely, we will investigate the 
Elimination Method, Gauss-Jordan Elimination (used on an augmented matrix), using a 
single matrix equation, and Cramer’s Rule. 
 
Consider the following system: 
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I. The Elimination Method: 
 

We will use the first two equations to eliminate the variable x and arrive at a 
single equation in only y and z.  Multiplying the second equation by –1 and 
adding, we have: 
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We will now use the last two equations to eliminate the variable x and arrive at a 
second equation in only y and z.  Multiplying the second equation by –2 and 
adding, we have: 
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Using the equations (1) and (2), we will now consider an easier system of two 
equations in two unknowns: 
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Multiplying both sides of the first equation by 
3

1
 , then adding, we can eliminate 

the variable y from the system and arrive at an equation solely in z: 
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We will now find the value for the variable y by using our value for z and 
substituting back into equation (2): 
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Finally, we will now use our determined values for both y and z, substitute them 
into one of the original three equations (we will use the third, for simplicity), and 
determine the value for the one remaining variable x: 
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From the equations (3.1), (3.2), and (3.3), we now have the ordered triple 

solution:  3,2,1   

 
II. Gauss-Jordan Elimination on an Augmented Matrix: 
 

Rewriting our original system as an augmented matrix, we will apply a sequence 
of elementary row operations to rewrite that augmented matrix in reduced row-
echelon form: 
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translating back from augmented matrix form to equation form, this gives us an 
equivalent system of three equations in the same three unknowns, specifically: 
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Again, we have a solution that is the ordered triple  3,2,1   

 
Now let us consider two additional techniques for solving a system of three equations in 
three unknowns: 
 
III. Using a Single Matrix Equation: 
 

We can rewrite the original system of three equations in three unknowns as a 
single matrix equation where A represents the matrix of coefficients of our three 

variables x, y, and z.  The matrix x , will be a 13  matrix (or equivalently a 

column vector) consisting of these three variables and b  will be a 13  matrix 
containing the constants that reside on the right-hand sides of the equations in 
the original system. 
 
 So our system can be generically rewritten in the form: 
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 Of course, our solution to this equation is: 
 

    bAx 1  
 
With our system, we can rewrite as a single matrix equation: 
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whose solution is: 
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Unfortunately, we cannot multiply on the right-hand side of this equation without 

first taking a break and finding 1A . 
 

Aside: 
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Now that we have found that 
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right-hand side of the equation (*): 
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 Yet again, we have a solution that is the ordered triple  3,2,1   

 
For our final attempt at solving this system of three equations in three unknowns, we will 
employ what is referred to as Cramer’s Rule, which employs the use of determinants: 
 
IV. Cramer’s Rule: 
 

Let us first compute D, the determinant of the coefficient matrix for the system of 
equations: 
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Replacing the first column (the column consisting of the coefficients for the 
variable x in each of our three equations) of the determinant D with the constants 
on the right-hand side of the equal signs in each of the original equations of our 

system, we can compute xD : 
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 Repeating this process on the second and third columns, we arrive at: 
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 And one last time, we arrive at the solution that is the ordered triple  3,2,1   

 
 
 


